A concept of mini-satellite for air quality observation

- a possibility after the GEMS satellite-

T. Fujinawa^{1,2}, K. Noguchi³, H. Tanimoto⁴, Y. Kayana⁵, A. Richter⁶, John P. Burrows⁶, N. Yoshida¹, and Y. Kasai^{1,2}

¹Tokyo Institute of Technology, Japan

²National Institute of Information and Communications Technology, Japan

³Nara Women's University, Japan

⁴ National Institute for Environmental Studies, Japan

⁵ Japan Agency for Marine-Earth Science and Technology, Japan

⁶Institute of Environmental Physics, University of Bremen, Germany

Contents

Introduction

- NOx chemistry impact on human health and environment
- Mission concepts

Method

- Parameter setup in this study
- Data processing method
- Input profile data area selection

- preparation of vertical profile

Results & discussion

Summary

NOx chemistry – impact on human health and environment

Anthropogenic

eutrophication

acid precipitate

●WHO reported that in 2012 around 7 million people died - one in eight of total global deaths – as a result of air pollution exposure.

• "High spatial resolution", such as 1x1km, observation is required to understand the inventory of NO₂ even from minor narrow sources.

Mission Concept

Mission concept: A microsatellite with high horizontal resolution

Scientific requirement

Products	Standard: NO ₂ ,O ₄
Detection limit (<u>NO₂ total column density</u>)[molecules/cm ²]	<u>3.0 x 10¹⁵ (5%)</u> (about 0.6ppb in boundary layer)
(ex) Tropospheric NO ₂ column amount [molecules/cm ²]	6.0 x 10 ¹⁶ (Boundary layer 4.7 x 10 ¹⁶)
IFOV	1 km x 1km (2 km x 2 km)
Vertical resolution	Tropospheric column
Swath width	approx. 200 km

In this study, we performed a feasibility study for observation precisions of NO₂

- \rightarrow Synthetic spectra are calculated using SCIATRAN (RTM) with two geometries.
- →Slant column densities (SCDs) are derived by DOAS method and converted to vertical column densities (VCDs) by division with air mass factor (AMF) derived from SCIATRAN.

Instrumental parameters in this study

These parameters made with A. Kuze (JAXA)

Setup of each parameter

Parameters	The number of	Elements of parameters	
	parameters		
Wavelength range	2	Reference : 425 - 450 nm(conventional region)	
		460-490 nm	
Area	2	Seoul (as polluted area)	
		Hokkaido (as clean area)	
Season	1	Winter(Jan.)	
Altitude of satellite	1	300 km	
Spectral resolution (FWHM)	1	0.4 nm	
Sampling step	1	0.1 nm	
Detector size	1	0.064 mm	
Aperture size	1	0.74 cm	
Read noise	1	10 e	
IEOV	2	1 x 1 km ²	
		2 x 2 km ²	

Data processing method

Fig. Flow of algorithm for estimation of precisions and accuracies of retrieved NO₂ (*Noguchi et al.*, 2011)

Precision analysis :

- Prepare the vertical profile of NO₂ and the other species as input data into RTM (SCIATRAN)
- •Convolute with Gaussian slit function and make 100 spectra added the pseudo-noise
- •Conduct DOAS fitting and retrieve SCDs from each spectrum
- •Estimate precisions of retrieval NO₂ column as 1σ standard deviation of 100 SCDs.

Input profile data - area selection

A. Richter et al., (2005) nature

Input profile data - preparation of vertical profile

<u>NO₂ vertical profile</u>

<u>Troposphere</u> : surface -10 km CHASER model, monthly mean, Jan. 2005 (2.8 \times 2.8° gridded cell)

Stratosphere : 10 km – 100 km SOCRATES model , annually mean

(from Aeronomy of the middle atmosphere ver.2 by G.P. Brasseur and S. Solomon)

Other gases

Provided by GMAP-Asia science team (Noguchi et al., 2011)

Pressure, Temperature

U.S. standard atmosphere

Results - Synthetic spectra from SCIATRAN

This figure shows a example of radiance spectra at 300 km of altitude by SCIATRAN.
Spectra convolved with Gaussian slit function with an FWHM of 0.4 nm were plotted in steps of 0.1 nm.

• The radiance at Seoul was larger than that at Hokkaido because SZA assumed at Seoul in this simulation was lower than that at Hokkaido.

Results – Expected SNRs for each IFOV case

SNRs expected in each wavelength and spatial resolution

Wavelength [nm]	Spatial resolution [km ²]	Expected SNR (Electronics)	Expected SNR (Shot)	Dark current SNR	Expected SNR (all)
480 (460 - 490)	1x1	1642	691	2806	621
	2x2	9287	1954	11222	1885
450 (425 - 450)	1x1	1411	620	2518	554
	2x2	7983	1753	10073	1688

•We assumed that the detector was Si-CMOS 2D array sensor and the optical efficiency and quantum efficiency was 0.43.

• In both cases of wavelength, expected SNRs of $2 \times 2 \text{ km}^2$ became about three times larger than them of $1 \times 1 \text{ km}^2$.

Results and discussion

Winter (Jan.), Alt. of satellite = 300 km, FWHM = 0.4, 460-490 nm, $\Delta\lambda$ =0.1 nm Left : Seoul Right : Hokkaido

Upper figure : SCD (total = tropo. + strato.), Middle figure : Error [molec/cm²], Lower figure : Error [%]

Results and discussion

Winter (Jan.), Alt. of satellite = 300 km, FWHM = 0.4, 425-450 nm, $\Delta\lambda$ =0.1 nm Left : Seoul Right : Hokkaido

Upper figure : SCD (total = tropo. + strato.), Middle figure : Error [molec/cm²], Lower figure : Error [%]

Summary

- There is no differences of precisions between two different wavelength, 425

 450 nm and 460 490 nm.
- \rightarrow The precisions are independent from wavelength used in DOAS in this simulation.
- Scientific requirement of the precision of total NO2 column was about 5%
- Spatial resolution of 1x1 km² provided SNR about 500 and the measurement precision to be 9% in this simulation.
- Spatial resolution of 2x2 km² provided SNR about 1700, and the measurement precision to be 4%.
- \rightarrow 1x1 km²-resoluted observation did not satisfy the scientific requirement in current instrumental concept although 2x2 km² entire satisfied.

 \rightarrow Next step

- lower orbit
- changing the detectors
- more broader frequency resolution

Thank you very much.