Conversion of NO₂ slant column into vertical column Summary of recent work

OMI NO₂ SP2 Algorithm Development Team NASA Goddard Space Flight Center

Key Elements in Estimating Trop AMF

- Stratospheric Subtraction
- Surface Reflectance
- Cloud Correction
- Aerosol Correction
- NO₂ Vertical profile

Stratospheric NO₂

• 30-100% of total slant column

Slant column fraction is larger than for vertical column due to smaller trop AMF

- Longitudinal variability
 - can be large at Korean latitudes
- Diurnal variability
 - Problem is more serious for GEO than for sunsynchronous LEO

Methods of estimating strat NO₂

- Use CTM with assimilated winds
 - Normalize to the measurements taken in the Pacific or assimilated satellite data
 - CTM accounts for diurnal variability
- Derive from OMI data
 - Mask polluted areas using CTM and degree of cloud cover
 - Interpolate and smooth unmasked areas
 - Separate estimate of diurnal variability not req'd

Determination of Strat Field from OMI data

3

Issues:

- Large areas west of Korea are masked, so uncertainty in estimating strat NO2 may be larger
- 2. Large variability near Korea

2005 03 21

2

4 x 10¹⁵ cm⁻²

Reflectance Effect

AMF varies by factor of 10, if one includes snow/ice pixels

Diurnal Variability of Stratospheric NO₂

Cloud Effect

- Need to know the fraction of radiation scattered by clouds, not cloud fraction
 - Varies not just with cloud properties but also by surface reflectance and Rayleigh path radiance
 - Cloud radiance fraction (CRF) technique developed by the OMI team works very well, except in presence of snow/ice
- Cloud height is important ONLY when clouds are below 2 km.

It is unlikely that cloud information from GOCI or AMI will help

Aerosol Effect

- Effect of aerosols and clouds differ primarily because they are at different heights
 - AOD effect is included in CRF, except for elevated smoke/dust.
- Effective cloud pressure derived from O₂-O absorption helps in reducing aerosol caused error
 - The effective pressure is higher when thick aerosols are present.
 - But this method needs further study.

It is unlikely that aerosol information from GOCI or AMI will help

NO₂ Vertical Profile

- NASA algorithm uses monthly climatology
 - derived from GMI model, which is based on GEOS-CHEM
 - driven by assimilated winds from NASA GSFC
 - Grid resolution is 2°x 2.5°
- Higher resolution model will be more useful for GEMS

Recommendation

 High res CTM driven by assimilated winds is essential for developing NO₂ algorithm

Needed for strat/trop separation & for providing vertical distribution

- Accurate surface BRDF data in the GEMS viewing area will need to be developed
- Better method for separating snow/ice from clouds needs to be developed
- Better method of handling aerosols is needed