GEMS Cloud Algorithm Development: Preliminary Results and Remaining Issues

Yong-Sang Choi¹, Bo-Ram Kim¹, Heeje Cho², Myoung Hwan Ahn¹, and Jhoon Kim³ ¹Ewha Womans University, Seoul, Korea

> ²Seoul National University, Seoul, Korea ³Yonsei University, Seoul, Korea

Acknowledgement: Drs. P.K. Bhartia, C. Ahn, D. Haffner, etc. (SSAI/GSFC, NASA) Dr. Piet Stammes (KNMI)

Preliminary Results

Introduction to cloud products

- Cloud radiative fraction
 - via effective cloud fraction (Mixed Lambertian Equivalent Reflector, MLER)
 - via geometrical cloud fraction (Mie Scattering Reflector)

Cloud pressure

- UV cloud pressure (O₂-O₂ absorption band)
- UV cloud pressure (UV-Visible bands; OMI and SCIAMACHY; Vasilkov et al., 2004)
- IR climatological cloud-top pressure (TOMS)

Synthetic data simulation

Simulated synthetic radiances w/ WRF cloud (true) & effective cloud fraction

Clear-sky radiance

Overcast radiance assuming Lambertian reflector $(A_c = 0.8)$

Measured radiance

Simulated synthetic radiances w/ WRF cloud (true) & effective cloud fraction

I_S

Clear-sky radiance

$$f_c = \frac{I - I_s}{I_c^* - I_s}$$

Overcast radiance assuming Lambertian reflector $(A_c = 0.8)$

The difference between effective cloud fraction and cloud radiative fraction

If S is the slant column of a trace gas $S = \int n(z)m(z)dz$ $m(z) = \frac{d\ln I}{d\tau(z)}; \quad \tau(z) = \sigma(z)n(z)$ where, n is trace gas density, σ is abs cross-section,

and m is the differential airmass factor

for MLER:

$$I = I_{s} (1-f_{c}) + I_{c}^{*}(R_{c}=0.8)f_{c} \implies f_{c} = \frac{(I-I_{s})}{(I_{c}^{*}-I_{s})}$$
$$m(z) = m_{s}(R_{s})(1-f_{R}) + m_{c}(R_{c}=0.8)f_{R} \implies f_{R} = f_{c}\frac{I_{c}^{*}}{I}$$

where R_s is surface reflectance, and f_R is cloud radiative fraction

For Mie:

$$\begin{split} \mathbf{I} &= \mathbf{I}_s (1 - f_g) + I_c(\tau_c) f_g \\ m(z) &= m_s(R_s)(1 - f_R) + m_c(\tau_c) f_R \\ f_R &= f_g \frac{I_c}{I} \end{split}$$

where, f_{g} is geometrical cloud fraction, and τ_{c} is cloud optical thickness

Note that IR/VIS cloud algorithms are retrieving this f_g and τ_c .

Concept of cloud pressure retrieval

Preliminary results from the GEMS prototype algorithm (input: OMI L1b)

Slant column density

Continuum reflectance

0.93

140°E

Look-up table constitution

VLIDORT inputs for cloud radiative fraction retrieval

VLIDORTs for cloud pressure retrieval

Variables	Values	Variables	Values	
Solar zenith angle	0°, 30°, 60°, 81°	Solar zenith angle	0°, 30°, 60°, 81°	
Viewing zenith angle	0°, 40°, 70°	Viewing zenith angle	0°, 40°, 70°	
Relative azimuth angle	0°, 90°, 180°	Relative azimuth angle	0°, 90°, 180°	
Surface pressure	1013, 950, 850 hPa	Surface pressure	1013, 950, 850 hPa	
Surface reflectance	0.05, 0.1, 0.2	Surface reflectance	0.05, 0.1, 0.2	
Cloud fraction	0, 0.1, 0.2, 0.4, 0.7, 1.0	Cloud pressure	800, 600, 350 hPa	
		Cloud fraction	0, 0.1, 0.2, 0.4, 0.7, 1.0	
VLIDORT calculation		VLIDORT calculation		
LUT1		LUT2		
Radiances (I, Is, I*c) (at which wavelength?)		Slant column density (Ns)		
		Continuum Reflectance (Rc)		

Remaining issues

(also for cloud breakout session on Thursday)

Issue: Cloud algorithm refinement

- Cloud radiative fraction:
 - at which wavelength? or assume independence of λ ?
 - need additionally cloud mask?
- Cloud pressure:
 - The method to obtain slant column density
 - Multiple regression
 - DOAS fitting
 - Iterative minimum variance procedure
 - Direct fitting
 - Or any idea?

Issue: Impact assessments on gases or cloud retrievals

- To what extent, the errors in cloud retrievals have effects on gas/aerosol retrievals?
 - Theoretical tests for the validity of gas/aerosol retrievals over cloudy regions
- To what extent, the errors in the cloud algorithm inputs have effects on cloud retrievals per se?
 - Surface reflectance
 - O₃, and aerosol profiles in forward simulations

Issue: Choosing cloud model to define cloud fraction

Issue: Combination with ABI/GK-2A

- ➤ IR/VIS cloud fraction
 - may be used as "geometrical" cloud fraction, in a similar way to Mie cloud model (Independent pixel approximation).
- ➢ IR/VIS Cloud top pressure (?)
 - probably looking at different cloud level.
- Temporal & spatial inconsistency
 - just few minute difference can cause large bias in cloud parameters
- Wavelength dependence

Multi-phase Cloud Effects

MODIS cloudtop press is insensitive to cloud vertical structure

Cloud Optical Centroid press calculated using OMI-measured Rot Raman Scattering is sensitive to cloud vert structure (ref : Vasilkov *et al.*,JGR, '08) Thank you

Appendices

Issue: Choosing cloud model to define cloud fraction

The dependence of R(340 nm)/R(380 nm) on R(380 nm) may agree between cloud models at certain geometry (SZA=45°, VZA=0°), but may not agree elsewhere.

Multiple regression

$$\begin{aligned} &-\ln(R_{\lambda}) \\ &= C_1 + C_2 * \lambda + N_{s,O_2 - O_2} * \sigma_{O_2 - O_2} + N_{s,O_3} \\ &* \sigma_{O_3} + N_{s,NO_2} * \sigma_{O_2 - O_2} \end{aligned}$$

	<i>C</i> ₁	<i>C</i> ₂	N_{s,O_2-O_2}	N _{s,O3}	N _{s,NO2}	$\overline{(y-\widehat{y})^2}$
Only O2-O2	-0.15	0.44E-02	1.88E43	-	-	1.37E-05
O2 and O3	-0.10	0.43E-02	2.00E43	3.10E17	-	1.36E-05
O2 and NO2	-0.17	0.44E-02	1.85E43	-	9.78E15	1.33E-05
All	-0.14	0.44E-02	1.96E43	2.71E17	9.35E15	1.32E-05

Multiple regression

- > Black: [OMI L1B] [retrieved continuum: $C_1 + C_2 * \lambda$]
- Red: [Linear fitting] [retrieved continuum]
- Blue circle is the O2-O2 absorption band.

Cloud models

Cloud model	Assumption	Definition	
LER	Lambertian reflector	$I_m = I_a + \frac{R * T}{1.0 - Sb * R}$	
MLER	Cloud, Lambertian reflector albedo = 0.8	$I_m = I_s(R_s, p_s) * (1 - f_c) + I_c(R_c, p_c) * f_c$	Recommended for operational retrieval
C1 cloud	Cloud cover =1, Mie scattering cloud	$I_m = I_c(\tau_c)$	
C1 cloud, IPA	Mie scattering cloud	$I_m = I_s (1 - f_g) + I_c(\tau_c) f_g$	Recommended for error estimation
Isotropic cloud	Cloud as isotropic surface	-	Make up for weakness of MLER concept

Cloud model (LER)

Lambertian Equivalent Reflectivity (LER) as:

$$I_m = I_a + \frac{R * T}{1.0 - Sb * R}$$

- I_m : TOA radiance
- *I_a*: Rayleigh scattering radiance
- T: Transmittance
- Sb: Spherical albedo
- R: Lambertian equivalent scene reflectivity

Cloud model (MLER)

≻Mixed LER as:

 $I_m = I_s(R_s, p_s) * (1 - f_c) + I_c(R_c, p_c) * f_c$

- This concept is used calculating effective cloud fraction.
- Weak point: no evidence of cloud albedo definition.

Cloud model (IPA)

Radiance is calculated in IPA cloud model: $I = I_s (1 - f_g) + I_c(\tau_c) f_g$

- Mie cloud, independent pixel approximation (IPA) have similar concept with MLER, except Lambertian cloud in MLER is replaced with Mie cloud.
- Mie cloud involves cloud macro and micro physics parameters like cloud thermodynamic state and cloud size distribution.

Cloud model study

This figure shows cloud radiance fraction from different optical thickness and wavelength. In long wavelength, it has big discrepancy for optical thickness difference

