Geostationary Environment Monitoring Spectrometer

Status of GEMS Science

Jhoon Kim

P.I., GEMS Yonsei University

리화경과항원

GEMS Science Team

Changwoo Ahn Jay Al-Saadi P.K. Bhartia Kevin Bowman Greg Carmichael Kelly Chance Yunsoo Choi Ron Cohen **Russ Dickerson David Edwards** Annmarie Eldering Dong Wu **Ernest Hilsenrath** Daneil Jacob Scott Janz Thomas Kurosu Qinbin Li

Xiong Liu **Randall Martin** Steve Massie Jack McConnel* Tom McElroy **Jessica Neu** Mike Newchurch Stan Sander **Jochen Stutz Omar Torres** Liang Xu Ping Yang Dusanka Zupanski Milija Zupanski

Heinrich Bovensmann John Burrows Joerg Langen Pieternel Levelt Ulrich Platt **Piet Stamnes** Pepijn Veefkind Ben Veihelmann **Thomas Wagner**

Young Joon Kim M.H. Lee Hanlim Lee H.W. Seo Kwang Mog Lee Rokjin Park Sukjo Lee Seon Ki Park Youdeog Hong J.S. Kim Chul Han Song Jung Hun Woo Hajime Akimoto Jung-Moon Yoo Sachiko Hayashida Seung Hoon Lee Hitoshi Irie Sang Soon Yong Yasko Kasai D.G. Lee Kawakami Shuji J.P Gong Dai Ho Ko **Charles Wong** S.H. Kim J.H. Yeon

Y.C. Youk

Jae Hwan Kim

Myung Hwan Ahn Jin Seok Han

Yong Sang Choi Chang Keun Song

Myeongjae Jeong Sang Deog Lee

Sangseo Park, Mijin Kim, Ukkyo Jeong, M.J. Choi; Ju Seon Bak, Kanghyun Baek; Hyeong-Ahn Kwon, H.J. Cho; K.M. Han, Jihyo Chong, Kwanchul Kim; J.H. Park, Y.J. Lee; Bo-Ram Kim, M.A. Kang J.H. Yang, Sujeong Lim, S.W. Jeong;

Outline

- GEMS Program
 - Status
 - Baseline Products
 - Specification
- Issues
 - Nominal radiance vs. SNR
 - RTS
- Summary

Air Quality Forecast in Operation

Status of GEMS Mission

Budget

- Budget request proposal was approved on Dec. 2010 by the Government Budget Review Committee led by the Ministry of Planning and Finance
- Three criteria in Gov. Budget Rev. Comm.:
 - Demand from the relevant Ministry: strong demand under Climate Change Monitoring & Adaptation Program of MoE.
 - ✓ Maturity of technology: TRL \ge 6 with OMI heritage in LEO
 - * Governmental Technical Review is still remained before PDR (Q1 2014)
 - ✓ Social Benefit of the Mission: B/C ratio = 1.8 (CVM, ABM, COS; benefit for public and industry)

Prime Contractor

 Selection of main contractor for the Joint Development with KARI on May 13th, 2013 (International Contractor: Ball Aerospace & Technologies Corp.)

Changes in Environment

- Domestic
 - GEMS, included as one of the 140 New National Agenda(2013)
 - Air quality forecast in operation since 2013 by NIER (data assimilation of model with sat. data)
- International
 - Increased attention on SLCF

International Collaboration

- Recognized as a part of Geostationary AQ Constellation by CEOS ACC
- ToR for NASA-NIER/ME collaboration endorsed by NASA HQ and NIER/ME
- Bilateral agreement between Korea MEST and U.S. NASA
- MOU between KARI and NSO
- MOU with NCAR(2010), Harvard CfA (2011), UCLA(2012); Agreement with NASA(2011)

GEMS: Measurements of ozone & aerosol with their precursors in high spatial and temporal resolution

Improving Air Quality and Limiting Short-Term Climate Changes

RIO+20 UN Conference on Sustainable Development (UNCSD) 20-22 June, 2012

Achim Steiner, UNEP Executive Director

"Need action on SLCFs, black carbon, tropospheric ozone, and methane... "

Baseline products

Product	Impor- tance	Min (cm ⁻²)	Max (cm ⁻²)	Nominal (cm ⁻²)	Accuracy	Spectral window (nm)	Spatial Resolution (km²) @ Seoul	SZA (deg)	Retriev- al
NO ₂	Ozone precursor	3x10 ¹³	1x10 ¹⁷	1x10 ¹⁴	1x10 ¹⁵	425-450	56	< 70	
SO ₂	Aerosol precursor	6x10 ⁸	1x10 ¹⁷	6x10 ¹⁴	1x10 ¹⁶	310-330	56 x 4 pixels	< 50 (60*)	BOAS / DOAS
нсно	Proxy for VOCs	1x10 ¹⁵	3x10 ¹⁶	3x10 ¹⁵	1x10 ¹⁶	327-357	56 x 4 pixels	< 50 (60*)	
O ₃	Oxidant, pollutant	4x10 ¹⁷	2x10 ¹⁸	1x10 ¹⁸	3%(TOz) 5%(Strat) 20%(Trop)	300-340	56	< 70	TOMS, OE
AOD (AI, SSA, AOCH)	Air quality, Climate	0 (AOD)	5 (AOD)	0.2 (AOD)	20% or 0.1@ 400nm	300-500	56	< 70	Multi- spectral O ₂ -O ₂
Clouds	Data quality, climate	0 (COD)	50 (COD)	17 (COD)		300-500	56		Raman, O ₂ -O ₂
Surface Property	Environ- ment	0	1	-		300-500	56		Multi- spectral

Projected FOV & GSD - NS GSD @ Seoul : 7.0km

Target center : 120E, 17N

S/L: 128.2E

CEOS (Committee on Earth Observation Satellites) ACC (Atmospheric Composition Constellation)

Constellation of GEO Missions to study Air Quality and Clin

Comparison of Specification

	GEMS		GEOCAPE [TEMPO]		Sentinel-4					
Spectral range(nm)	300 – 500 nm		[2	90 – 690 r	าm]	305-5	500 / 750-	775		
Spectral resol(nm)	0.6 (3 samples)			[0.6]		0.5 / 0.12				
Spatial resol	7 km NS x 8 km EW @ Seoul 3.5 km NS x 8 km EW for aerosol		[2.0 km NS x 4.5 km EW]		8 km @ 45 N					
Spatial coverage	5 S – 45 N 75 E – 145 E		30 N - 65 N 40 W – 60 E		20 N – 60 N 30 W – 150 W					
Obs. time		30 ו	min			[1 hour]			1 hour	
Detector @ T		CCD @	278 K		[C0	CD @ ~25	5 K]	CCD @ 230 K		K
Onboard calibration	So	olar, cal li	ght sourc	e		[Solar]		Solar, cal light source		
Volume (m ³)	1.1 x 1.2 x 0.9		[1 x 1.1 x 1]		~1.1 x 1.2 x 0.9					
Mass (Kg)	110		[100]		150					
Power (W)	200 (on orbit) / 100 (transfer)		[100]		180					
Data rate (Mbps)	20 (up to 40)		[9]		25 Mbps					
	Wave- length	Nominal Goal	radiance Threshol d	SNR @ λ [nm]	Wave- length	Nominal radiance	SNR	Wave- length	Nominal radiance	SNR
0115	300-315	4.93	7.98	252 @300	205 220	22.5		305 310 315	1.10 2.90 18.0	160 320 630
SNR &	315-325	30.4	43.4	720 @320	305-330	33.5	720 [1290]	320	30.9	900
Nominal Radiance	325-335	63.8	86.6	1273	320-329	54.3	[480]			
[Wm⁻²sr⁻¹µm⁻¹]	335-357	65.2	91.4	@325 1504	327-356	53.3		350	70.9	1000
	357-423	71.6	108.7	@357				400	91.4	1200
	423-451	86.4	130.8	1500 @430	423-451	67.3	[1230]	450	101	1400
	451-500	103.7	145.5	1459 @500				500	73.1	1400
Ref.			Kelly Chance		Ben Veihelmann, Cathy Clerbaux					

Comparison of Baseline Products

GEMS		GEOCAPE [TEMPO]		Sentinel-4			
Operation		2018-2027		2019-	-2021	2019-2028	
Products		O ₃ , NO ₂ , O ₄ , SO ₂ , HCHO, AI, AOD, SSA, Cloud		O ₃ ,(UV, Vis), NO ₂ , SO ₂ , H ₂ CO, H ₂ C ₂ O ₂ , AOD, AI, Cloud		O ₃ , SO ₂ , (<i>BrO</i>), HCHO, Ring , NO ₂ , O ₄ , (<i>IO CHOCHO),</i> AAI, AOD, Cloud	
		Typical range	Precision	Typical value	Precision	Typical value	Precision
	0-2 km	$4 \times 10^{17} \sim$		40 ppb	10%		
0.	Free Troposp	2x10 ¹⁸ cm ⁻²	20 %	50 ppb	10%		10-25%
03	Strato- sphere	230-360 DU	5 %	8 x 10 ³	5%		
	Total	250-400 DU	3 %	9 x 10 ³	3%		
NO ₂		3x 10 ¹³ ~ 3x 10 ¹⁷ cm ⁻²	1x10 ¹⁵ cm ⁻²	6	1.00		15-25%
SO ₂		6x10 ⁸ ~ 1x10 ¹⁷ cm ⁻²	1x10 ¹⁶ cm ⁻²	10	10.0		20-50%
НСНО		1x10 ¹⁵ ~ 3x10 ¹⁶ cm ⁻²	1x10 ¹⁶ cm ⁻²	10	10.0		20-50%
AC	DD	0.2	0.1	0.1-1	0.05		
AAOD				0-0.05	0.03		
AI		-1 ~ +5	0.2	-1 - +5	0.2		
Cloud Fraction		0 ~ 1	0.05	0-1	0.05		
Cloud Top Height		200-900 hPa		200-900 hPa	100 hPa		
сносно				0.2	0.4		
В	rU					Pop Voik	olmonn
Ref.				Kelly C	hance	Cathy C	Clerbaux

Error analysis using the optimal estimation method

Calculation domain & conditions

Temporal domain

0 – 7 UTC (every hours) X 12 month

Spatial domain

75 – 145 longitude X 5 – 45 latitude (2 degree resol.)

→ ~ 70,000 runs

Atmosphere profiles

Randomly extracted GEOS-chem US atmosphere (~70,000 profiles) 6 gases (O_3 , NO_2 , H_2CO , SO_2 , $C_2H_2O_2$, H_2O), BrO, OCIO, O_4 Actual viewing geometry for a geostationary satellite at 128.2° E No aerosol and cloud (under consideration)

RTM calculation and sensitivity calculation

300-500 nm at 0.6 nm FWHM, every 0.2 nm GEMS SNR Climatology surface reflectance from TOMS at 388nm

Nominal radiance and SNR

- Overestimation of nominal radiance \rightarrow decrease of SNR
- Near 300 nm → Important for ozone retrieval (wavelength coverage extension issue)

Nominal radiance issue

- No aerosols or clouds
- GEMS surface reflectance and viewing geometry
- Randomly extracted GEOCAPE CTM results (~70,000 simulations)
- Scalar calculation
- GOCI most probable measured radiance (all pixels including cloud) (one daily cycle per month for 1 year (2012), Lat = 25N~48N, Long = 115E~145E)

Predicted trace gas retrieval performance of GEMS (w/o cloud & aerosol)

Species	Required Precision	Meet Reqs (%)		
0	10 ppby	86.0 % (300-500 nm)		
O_3	ναϥϥͺυτ	86.6 % (290-500 nm)		
NO ₂	1x10 ¹⁴	99.8 %		
SO ₂	6x10 ¹⁴	30.8 %		
НСНО	3x10 ¹⁵	99.8 %		

Solution:

- \checkmark Coadd spatial pixels (2, 4,...), but only possible in N-S direction
- ✓ Increase integration time by

securing longer observation time than 30 minutes reducing E-W scan range

Predicted SNR @ nominal radiance with different integration time

Issues: 1) signal saturation, 2) pointing stability

Fraction of predicted SNRs larger than requirements at original nominal radiance of each wavelength bin

	SNR Proposed @ original nominal radiance	SNR with median radiance of GEMS / Proposed SNR (%)					
Wavelength		1x integration time	4/3x integration time	5/3x integration time	2x integration time		
300 nm	252	14.6 %	17.4 %	19.8 %	22.0 %		
320 nm	720	152.5 %	178.2 %	200.8 %	221.3 %		
325 nm	1273	97.8 %	114.2 %	128.7 %	141.7 %		
357 nm	1504	89.6 %	104.6 %	117.8 %	129.7 %		
430 nm	1500	81.2 %	94.8 %	106.8 %	117.7 %		
500 nm	1459	74.4 %	87.0 %	98.1 %	108.1 %		
	w.r.t GEMS Nominal Radiance		w.r.t New GEN Nominal	AS Radiance			

Operation mode

Operation mode		Observation Freq. (min)	E-W Scan coverage (@lat. of Seoul)
Normal		60*	75 E – 145 E (70 deg wide)
Special	EA(East Asia)	60*	110 E – 140 E (30 deg wide)
	EEA(Enhanced E ast Asia)	60*	115 E – 130 E (15 deg wide)
	LA(Local Area)	< 30	In emergency by ground command

• Imaging time 30 minutes + Transmission 30 minutes to avoid mechanical disturbance with GOCI-2

Lessons from OMI

OMI Radiation Test

- Large increase in dark current.
- More ~40% of the pixels showed increased noise (RTS) by more tha n a factor of 2.
- Estimated decrease in CTE of 4%

Measures

- Decrease the detector temperature from +5C to -8C.
- Add 10 kg of shielding around the detectors.(29 mm Al shielding)
- Frequent dark current map updates ^{40 i}_{obs}

RTS detection and flagging algorith ms.

Veefkind and Levelt (2011)

Fig. 43. Dark signal measurement with exposure time 136 s and gain factor 40 in SAA. The increased number of random hits and trails of particles can be observed.

Dobber et al.(IEEE TGRS, 2

Random Telegraph Signals (RTS)

- Randomly changing dark current
- Time scale : seconds ~ week

RTS

4%

5%

4%

4%

5%

4%

Veefkind and	Levelt	(2011)
--------------	--------	--------

5%

4%

4%

Data Quality Harmonization with GEO Constellation

- CEOS ACC
 - Harmonizing data quality
 - Sharing basic requirements
 - Comparing algorithm performance
 - Common algorithm standard
 - Cross participating science & review meetings
- Calibration
 - Preflight cal
 - Postflight ground-based Cal/Val
 - Pandora, SAOZ ...
 - NDACC activities

Summary

• GEMS is expected to provide information on trace gas and aerosol with their precursors in high spatial and temporal resolution

- O_3 NO₂ HCHO SO₂ AOD (possibly CO, CH4, and CO2 ?)

- Clouds, surface reflectance, UV radiation.
- The predicted performance of trace gases from the initial design of GEMS satisfies the product accuracy requirements of NO₂, HCHO, O₃. Meanwhile, the estimated accuracy of SO₂ product seems to be questionable, thus requires the increase of SNR. Revisiting nominal radiance issue, together with the consideration of spatial coadding (lowering resolution), longer observation time, or more frequent operation (or reduced E-W scan range) needs to be taken.
- To avoid the RTS, it is required to lower the detector temperature with appropriate shield.
- Effects of aerosols and clouds on the trace gas retrieval performance should be examined in more detail with realistic data within the GEMS domain.
- The data assimilation between CTM and GEMS data is important with the air quality forecast in operation.

Acknowledgement

GEMS Science Team

Ministry of Environment (MoE), Rep. of Korea NIER, MoE KEITI, MoE

Ministry of Science, ICT & future Planning (MSIP) KARI