Development of cloud algorithm for GEMS: Synthetic cloud data

<u>Yong-Sang Choi</u>¹, Bo-Ram Kim¹, Heeje Cho²

¹Ewha Womans University ²Seoul National University

Climate System Laboratory

Introduction

- Cloud contamination causes
 errors in air mass factor
 errors in gas/aerosol retrievals
- Accurate cloud data will serve to
 - → better cloud screening for gas/aerosol retrieval
 - better cloudy-sky gas/aerosol retrievals*

*Vasilkov et al. (2004) Improving total column ozone retrievals by using cloud pressures derived from Raman scattering in the UV"

Climate System Laboratory

Theoretical background for cloud pressure retrieval

O₂**-O**₂ absorption (477 nm)

 $A(\lambda) = [R_m(\lambda) - R_f(\lambda)]/R_f(\lambda)$ $R_m(\lambda) : \text{the measured reflectance}$ $R_f(\lambda) : \text{the calculated reflectance}$ using without O₂-O₂ absorption **Rotational Raman scattering (393.6 nm)**

 $k(\lambda) = [I_m(\lambda) - I_R(\lambda)]/I_R(\lambda)$ $I_m(\lambda) : \text{the measured radiance}$

 $I_R(\lambda)$: the calculated radiance using only Rayleigh scattering

The cloud retrieval algorithm and its validation problems

Input Data

Output data

- Radiance and spectral reflectance($R = \pi L/E$) of 300~500 nm
- Location (longitude, latitude, local time)
- Calculated scattering angle from location data

Using O₂-O₂ absorption band at 477 nm

Calculating cloud effective fraction

$$c = \frac{(R_{meas} - R_{clear})}{(R_{cloud} - R_{clear})}$$

- R_{meas} : the measured reflectance
- R_{clear} : the reflectance for clear sky from surface albedo database
- R_{cloud} : the calculated reflectance of a completed cloudy pixel

Calculating cloud pressure

- DOAS fit : to determine the continuum reflectance and the slant column density O₂-O₂
- A look-up table : to determine the altitude, z_L
- 3. The cloud altitude z_L is translated to the cloud pressure, $p_L(O_2)$

Using Ring effect at 393.6 nm

Calculating cloud effective fraction

$$f = \frac{(I_{clear} - I_{meas})}{(I_{clear} - I_{cloud})}$$

- *I_{meas}* : the measured TOA radiance
- I_{clear} : the calculated radiance for clear sky
- *I_{cloud}* : the calculated radiance of a completed cloudy pixel

Calculating cloud pressure

- 1. Filling-in factor, k : to quantify the RRS (Rotational Raman Scattering) effect on radiance
 - $k(\lambda) = [I_m(\lambda) I_R(\lambda)]/I_R(\lambda)$
- $I_m(\lambda)$: the measured radiance
- *I_R(λ)* : the calculated radiance using only Rayleigh scattering
- A look-up table : to determine the altitude, z_L
- 3. The cloud altitude z_L is translated to the cloud pressure, $p_L(RRS)$

Is the cloud retrieval algorithm correctly working?

• To validate the cloud retrieval algorithm, we need cloud data, which is physically consistent with radiance data.

(*Problem 1*) Every cloud data has observational errors.

(*Problem 2*) No geostationary spectral UV/VIS radiance observations exist.

Cloud effective fraction

Cloud pressure

Concept of synthetic (or proxy) data

Climate System Laboratory

WRF (Weather Research & Forecasting Model) Data

Area: 25°–45° N, 110° –140° E

WRF (Weather Research & Forecasting Model) Data

Area: 25°–45° N, 110° – 40° E Period: Aug. 6–7, 2011 (Typhoon Muifa)

Radiative transfer simulation

Assumptions for RT simulation

- Land use type
 - sand, snow, water, vegetation, or soil
- Cloud
 - All clouds are composed of 1-layer and vertically homogeneous (due to vertical inhomogeneity errors in SCIATRAN)
 - Size of liquid particle: $12 \ \mu m$
 - Size of ice particle: $100 \ \mu m$
 - Shape of ice particle:"fractal" (SCIATRAN 3.1)

Angle geometry

- RT simulations are performed with due considerations of the angle geometry.
 - -Solar zenith angle = F(lat, lon, date, time)
 - Satellite viewing angle = $F(lat, lon, lon_{sat})$
 - Relative azimuth angle = F(lat, lon, lon_{sat}, time, date)

Cloud water/ ice mixing ratio → water/ ice contents

Using ideal gas law ($P = \rho RT$), mixing ratio (g/g) = $\frac{water (ice) mass}{dry air mass}$ mixing ratio (n^{th} level) × ρ_n (dry air density) = water (ice) content (g/m^3) where $\rho_n = \rho_0 \times \frac{P_n}{P_0} \times \frac{T_0}{T_n}$, $\rho_0 = 1.29 \, kg/m^3$, $P_0 = 1013.25 \, hPa$, $T_0 = 273.15K$, $P_n = P + PB$, $T_n = (T00 + T) \left(\frac{1000hPa}{P_n}\right)^{-\frac{R}{C_p}}$

P (perturbation pressure) *PB* (base state pressure)

T (perturbation potential temperature) *T00* (base state temperature)

Vertical coordinate

Solid line: unstaggered level Dashed line: staggered level

An example of simulations

An example of simulations

477-nm Radiance (Clear sky)

477-nm Radiance (Total sky)

Simulated radiance (W/m2/sr/micron) at 477nm Simulated radiance (W/m²/sr/micron) at 477nm

Summary & Future Works

Summary

RT simulations from WRF output is ongoing...
Future works include

- Simulations for the full spectral range of GEMS
- Simulation of vertically inhomogeneous multilayer clouds
- Comparing the retrieved cloud data with the WRF's cloud data
- Applying the synthetic data to the cloud algorithm

Papers in 2012 supported by this program

- Cho, H., C.-H. Ho, and Y.-S. Choi (2012), The observed variation in cloud-induced longwave radiation in response to sea surface temperature over the Pacific warm pool from MTSAT-1R imagery, Geophys. Res. Lett., 39, L18802.
- Oh, H.-R., C.-H. Ho, and Y.-S. Choi (2012), Comments on "Direct radiative forcing of anthropogenic aerosols over oceans from satellite observation", Advances in Atmos. Sci. (*in press*)