TEMPO

Tropospheric Emissions: Monitoring of Pollution National Aeronautics and Space Administration

Smithsonian Astrophysical Observatory

The TEMPO concept for geostationary monitoring of Greater North American atmospheric pollution

> Kelly Chance, Xiong Liu, and the TEMPO team

3rd GEMS Workshop Seoul, Korea October 9, 2012

Footprint, GSD and FOR

GNA imaged in 1 hour with large SNR margins

2 km x 4.5 km pixel at 36.5° N, 100° W

Field of Regard

Slit projected onto scene Scans East to West in 1250, 110 µrad steps 2000, 40.6 µrad North-South IFOVs

A12108_001 Each 2 km × 4.5 km pixel is a 2K element spectrum from 290-690 nm!

Ball Aerospace & Technologies Corp. Proprietary Information

Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. Government

UV/Vis satellite background

A full, minimally-redundant, set of polluting gases, plus aerosols and clouds is currently measured to very high precision from satellites. This includes O_3 (with profiles and tropospheric O_3), NO₂ (for NO_x), H₂CO and C₂H₂O₂ (for VOCs), SO₂, H₂O, O₂-O₂, N₂ and O₂ Raman scattering, and halogen oxides (BrO, CIO, IO, OCIO). Spectrometers planned since 1985 began making these measurements in 1995.

- Measurements of the critical set of gases are fitted to 2-5×10⁻⁴ of the full-scale measured radiances.
- Scaling from LEO implies successful geostationary pollution monitoring.

SCIAMACHY original sensitivity study – K. Chance, W. Schneider, J. Burrows, 1986-1987

Appendix on Sensitivity Studies for Constituent Measurements

Summary

SCIAMACHY sensitivity studies include the three measurement geometries: nadir observing, viewing the earth's limb in scattered light, and solar and lunar occultations. In nadir observation alone, profile information is determinable in some cases by differential penetration of backscattered light at different wavelengths (as in TOMS/SBUV), and by the variable temperature structure of some molecular absorptions. Height resolution from nadir measurements is limited to 8-10 km from differential penetration and 3 km in favorable cases using temperature structure. Height resolution in limb viewing is 3 km, limited by the weighting functions for limb scattering and by the spacecraft stability. Height resolution is also 3 km for occultations, limited primarily by the telemetry data rate - 1 km resolution would otherwise be possible. The quantities retrieved from SCIAMACHY measurements include:

- eXceL O₃!
- Nadir observations: Total column amounts of O₃, O₄, O₂, CO, H₂O, CH₄, CO₂, NO₂, N₂O, HCHO, SO₂, ClO, OClO, and BrO; stratospheric profiles of O₃, CO, H₂O, CH₄, CO₂, N₂O; the column of NO above the ozone layer; tropospheric profiles or columns of O₃, CO, H₂O, CH₄, CO₂, N₂O. Stratospheric profile information, discrimination between stratospheric and tropospheric columns, and, in some cases, tropospheric profile information is derived from the temperature dependences of the absorption features.
- Limb viewing observations: Stratospheric profiles of O₃ (20-50 km), O₂(¹Δ) (50 km-90 km), O₂ (20-50 + km), CO (20-35 km), H₂O (20-53 km), CH₄ (20-40 km),

SPIE 1991

Retrieval and Molecule Sensitivity Studies for the Global Ozone Monitoring Experiment and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY

Kelly V. Chance

Harvard-Smithsonian Center for Astrophysics Cambridge, MA 02138

John P. Burrows

All geostationary molecules except C2H2O2 analyzed German Aerospace Research Establishment

Max Planck Institute for Chemistry Mainz, Germany

Wolfgang Schneider

Oberpfaffenhofen, Germany

ABSTRACT

The Global Ozone Monitoring Experiment (GOME) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are diode array-based spectrometers that will make atmospheric constituent and aerosol measurements from European satellite platforms beginning in the mid 1990's. GOME measures the atmosphere in the UV and visible in nadir scanning, while SCIAMACHY performs a combination of nadir, limb, and occultation measurements in the UV, visible and infrared. We present a summary of the sensitivity studies that have been performed for SCIAMACHY measurements. As the GOME measurement capability is a subset of the SCIAMACHY measurement capability, the nadir, UV and visible portion of the studies shown here apply to GOME as well.

Sun-synchronous heritage GOME/SCIAMACHY/OMI/GOME-2/OMPS nadir

CfA

Instrument	Detectors	Spectral Coverage [nm]	Spectral Resolution [nm]	Ground Pixel Size [km ²]	Global Coverage
GOME (1995- 2011)	Linear Arrays	240-790	0.2-0.4	40 × 320 (40 × 80 zoom)	3 days
SCIAMACHY (2002-2012)	Linear Arrays	240-2380	0.2-1.5	30 × 30/60/90 30 × 120/240 (depending on product)	6 days
OMI (2004)	2-D CCD	270-500	0.42-0.63	15 × 30 - 42 × 162 (depending on swath position)	daily
GOME-2 (2006, 2012)	Linear Arrays	240-790	0.24-0.53	40 × 40 (40 × 80 wide swath; 40 × 10 zoom)	near-daily
OMPS-1 (2011)	2-D CCDs	250-380	0.42-1.0	50 × 50 250 × 250 (depending on product)	daily

Previous experience (since 1985 at SAO) Scientific and operational measurements of pollutants O₃, NO₂, SO₂, H₂CO, and C₂H₂O₂ (and BrO, OCIO, CIO, IO, H₂O, O₂-O₂, Raman,)

GOME Earth albedo spectra, clear and cloudy

SAO-developed the algorithm physics for UV/vis atmospheric measurements:

- Precise dynamic wavelength and slit function calibration
- Quantum-mechanically correct Raman scattering (Ring effect) correction
- Spectral undersampling correction for insufficient Nyquist sampling
- Spectral common-mode correction
- Configuration-controlled choices of reference spectra (HITRAN! http://www.cfa.harvard.edu/hitran)

Vertical Column Retrievals

Trace gas column fitting results (NO₂, SO₂, H₂CO, C₂H₂O₂, H₂O, BrO, OCIO, IO) come from directly fitting radiances

- Simple Ring effect formulation (no induced Fraunhofer structure or induced wavelength mismatch
- No distortion of measured data due to high-pass filtering: Full dynamic range of measurements used
- THEN: Division by air-mass factor (AMF) using LIDORT/ VLIDORT radiative transfer model and GEOS-CHEM 3-D tropospheric chemistry and transport model
- **NOW: Pre-division** of reference spectra by λ-dependent AMF Current tabulation G. Gonzalez Abad *et al.*

OMI O₃ Profile Algorithm Description (eXceL)

- Spectral fitting with full radiative transfer model simulation (VLIDORT) (Spurr *et al.*, 2001; 2002, 2004, 2006, 2008).
- Fitting windows: 290-307, 325-340 nm (GOME), 270-330 nm (OMI)
- Retrieve O₃ partial columns at 24 layers from surface to above 60 km
- III-posed problem: non-linear optimal estimation (Rodgers, 2000) with ozone profile climatology (McPeters *et al.*, 2007) to constrain retrievals

$$C^{2} = \left\| \mathbf{S}_{y}^{-\frac{1}{2}} \{ \mathbf{K}_{i} (\mathbf{X}_{i+1} - \mathbf{X}_{i}) - [\mathbf{Y} - \mathbf{R}(\mathbf{X}_{i})] \} \right\|_{2}^{2} + \left\| \mathbf{S}_{a}^{-\frac{1}{2}} (\mathbf{X}_{i+1} - \mathbf{X}_{a}) \right\|_{2}^{2}$$
$$\mathbf{X}_{i+1} = \mathbf{X}_{i} + (\mathbf{K}_{i}^{\mathsf{T}} \mathbf{S}_{y}^{-1} \mathbf{K}_{i} + \mathbf{S}_{a}^{-1})^{-1} \{ \mathbf{K}_{i}^{\mathsf{T}} \mathbf{S}_{y}^{-1} [\mathbf{Y} - \mathbf{R}(\mathbf{X}_{i})] - \mathbf{S}_{a}^{-1} (\mathbf{X}_{i} - \mathbf{X}_{a}) \right\|_{2}^{2}$$

- Y: Measurement vector (e.g., radiances)
- X, X_i, X_{i+1}: State vector (*e.g.* ozone profile)
- X_a: *a priori* state vector
- **K** : Weighting function matrix, sensitivity of radiances to ozone
- S_a: A priori covariance matrix
- S_y: Measurement error covariance matrix

Liu et al., 2005, JGR, Liu et al., 2010

Smithsonian Astrophysical Observatory OMI eXceL O₃ profile product

O₃ Profile APP: PROFOZ (V1.0) at OMI SIPS (Liu et al., 2010a,b)

- O_3 at 24 layers up to ~60 km from 270-330 nm OMI radiances
- Soft radiometric correction (independent of time & space)
- Optimal estimation with LLM climatology (McPeters <u>et al.</u>, 2007)
- NCEP tropopause, derive TOZ, SCO, TCO to within a few DU
- Data availability: Oct. 2004-May 2009
- Improvements will include tropopause-based O₃ climatology (Pusan U. & SAO, publication in progress)

Aug. 26, 2006

Smithsonian Astrophysical Observatory

11-28-2011 DRAFT GEO-CAPE aerosol-atmospheres Science Traceability Matrix BASELINE and THRESHOLD

cience Questions	Measurement Objectives (color flag maps to Science Questions)	Measurement Requirements (mapped to Measurement Objectives)		Measurement Rationale					
What are the	Baseline measurements ¹ : O3, NO2, CO, SO2, HCHO, CH4, NH3, CHOCHO, different temporal sampling frequencies, 4 km x 4 km product horizontal spatial resolution at the center of the domain; and AOD, AAOD, AI, aerosol optical centroid height (AOCH), hourly for SZA-70 and 8 km x 8 km product horizontal spatial resolution at the		Geostationary Observing Location: 100 W +/-10				Provides optimal view of North America.		
temporal and spatial variations			Column measurements: [A to K] All the baseline and threshold species					Continue the current state of practice in vertical; add temporal resolution.	
of emissions of gases and			Cloud Camera 1 km x 1km horizontal spatial resolution, two spectral bands, baseline only				tial nly	Improve retrieval accuracy, provide diagnostics for gases and aerosol	
aerosols important	center of the domain.	Vertical i	nformation	: įA to	Kj				
tor air quality and climate? How do physical, chemical, and	<u>Threshold measurements</u> : CO hourly day and night; 03, NO2 hourly when SZA<70; AOD hourly (SZA<50); at 8 km × 8 km product horizontal spatial resolution at the center of the domain.		Two pieces of information in the troposphere in daylight with sensitivity to the lowest 2 km Threshold)		O line and hold)	Separate the lower-most troposphere from the free troposphere for O3, CO.			
			Altitude (+/- 1km) AOCH (baseline		l ine only)	Detect aerosol plume height; improve retrieval accuracy.			
dynamical	A. Measure the threshold or baseline species or	Product horizontal spatial resolution at the center of the domain, (nominally 100W, 35 N): [A to H]							
processes determine tropospheric	properties with the temporal and spatial resolution specified (see next column) to quantify the underlying emissions, understand emission		4 km x 4 km (baseline), 8 km x 8 km (threshold) Gases		s	Capture spatial/temporal variability; obtain better yields of products.			
composition and	processes, and track transport and chemical evolution of air pollutants 2 3 4 5 6 1	8 km x 8 km (baseline, threshold)		shold)	prope	rties			
air quality over		16 km × 1	6 km (base	line on	ly)	Over o ocean	open	Inherently larger spatial scales, sufficient to link to LEO observations	
scales ranging	aerosol and nitrogen deposition to land and		Spectral region : A to H					Typical use	
continental.		UV-Vis or	UV-TIR	03				Provide multispectral retrieval information	
diurnally to	Measure AOD, AAOD, and AOCH to relate surface PM concentration. UV-B level and	SWIR, MI	NIR	co				in daylight	
seasonally?	visibility to aerosol column loading 🚺 2, 3, 4, 5,	SWIR		SO2,	нсно			Retrieve gas species from their	
		TIR		NH3				atmospheric spectral signatures (typical)	
How does air pollution drive	Determine the instantaneous radiative forcings associated with ozone and aerosols on the continental scale and relate them quantitatively			AOD,	NO2, Cł	носн	0	Obtain spectral-dependence of AOD for particle size and type information	
and how does	to natural and anthropogenic emissions [3, 5, 6]	UV-deep	blue	AAOD			Obtain spectral-dependence of AAOD for aerosol type information		
climate change	Observe pulses of CH4 emission from biogenic and anthropogenic releases: CO anthropogenic	UV-deep	p blue Al			Provide absorbing aerosol information			
affect air quality	and wildfire emissions; AOD, AAOD, and AI from	Vis-NIR AOCH			Retrieve aerosol height 3				
scale?	and AOD from volcanic eruptions [1, 4, 6]	Atmospheric measurements over Land/Coastal areas, baseline and threshold: A to K							
How can observations from space improve air quality forecasts and assessments for societal benefit?	 Quantify the inflows and outflows of O3, CO, SO2, and aerosols across continental boundaries to determine their impacts on surface air quality and on climate (2, 3, 5) Characterize aerosol particle size and type from spectral dependence measurements of AOD and AAOD (1, 2, 3, 5, 5) Acquire measurements to improve representation of processes in air quality models and improve data assimilation in forecast and assessment models (a) Synthesize the GEO-CAPE measurements with information from in-situ and ground-based 	Species	Time resolution	n _{Va}	vpical alue ²	Preci	ision ²	Description	
		03	Hourly, SZA<70	9 x	10 ¹⁸	0-2 kn 2km-t 15 p	n: 10 ppbv tropopause: opbv	Observe O3 with two pieces of information in the troposphere with sensitivity to the lowest 2 km for surface	
			Hourly,		4018	O-2 kn	sphere: 5% n: 20ppbv	AQ; also transport, climate forcing Track anthropogenic and biomass burning plumes; observe CO with two	
			night	2 ×	10.2	01° 2km–tropopause 20 ppbv		pieces of information in the vertical with sensitivity to the lowest 2 km in daylight	
How does		AOD	Hourly, SZA<70	0.1	I – 1 0.05			Observe total aerosol; aerosol sources and transport; climate forcing	
intercontinental transport affect air quality?		NO2	Hourly, SZA<70	6 x	10 ¹⁶	1×10 ¹	6	Distinguish background from enhanced/ polluted scenes; atmospheric chemistry	
	remote sensing networks to construct an		Additional atmospheric measurements over Land/Coastal areas, baseline only: At					Coastal areas, baseline only: A to K	
How do episodic	ennanced observing system (E) 2, 3, 4, 5, 9		Time resoluti	ion	Typic value	al	Precision ²	Description	
events, such as	geostationary satellites over Europe and Asia	нсно*	3/day, S	ZA<50) 1.0x1	0 ¹⁶	1×10 ¹⁶	expected to peak at midday; chemistry	
outbreaks, and	together with LEO satellites and suborbital platforms for assessing the hemispheric transport	SO2*	3/day, S	ZA<50) 1×10	16 .	1×10 ¹⁸	Identify major pollution and volcanic emissions; atmospheric chemistry	
affect atmospheric	Integrate observations from GEO-CAPE and	CH4	2/day	/day 4		19	20 ppbv	emissions sources	
composition and air quality?	other platforms into models to improve representation of processes in the models and to link the observed composition, deposition, and radiative forcing to the emissions from	NH3	2/day		2x10 ¹	6	0-2 km: 2ppbv	Observe agricultural emissions	
		CHOCHO* 2/day			2x10 ¹⁴		4×10 ¹⁴	formation, atmospheric chemistry	
	anthropogenic and natural sources [1], 2, 3, 4, 5, 6]	AAOD Hourly, SZ		SZA<7	A<70 0 - 0.05		0.02	Distinguish smoke and dust from non- UV absorbing aerosols; climate forcing	
	-	AI	Hourly,	SZA<7	0 -1 - +	-5	0.1	Detect aerosols near/above clouds and over snow/ice; aerosol events	
		AOCH	Hourly,	SZA<7	0 Varia	ble	1 km	Determine plume height; large scale	
		Open oc	ean measu	remen	ts: FH	, I, J, K	baseline	only, 16 km x 16 km	
			03 1/day		Over				
			со		1/day D		pollution, du	r open oceans, capture long-range transport of ution, dust, and smoke into/out of North America; blish boundary conditions for North America	
			AOD, AAOD, AI		1/day establish b		establish bo		

TEMPO works from the GEO-CAPE Science **Traceability Matrix** to define measurement requirements and then instrument requirements

AOD=Aerosol optical depth, AAOD=Aerosol absorption optical depth, AI=Aerosol index. See next page for footnotes

Required Concentration Precisions for GEO-CAPE/TEMPO Air Quality Gas Measurements*

Molecule	Vertical Column [mol cm ⁻²]	Sensitivity Driver		
O ₃	2.4×10^{16}	Hourly for SZA $\leq 70^{\circ}$ ~10 ppbv in PBL; reality (profiling) is more complicated		
NO ₂	1.0×10^{15}	Hourly for SZA $\leq 70^{\circ}$ Distinguish background from enhanced/polluted scenes		
SO ₂	$1.0 imes 10^{16}$	3/day for SZA \leq 50° Identify major pollution and volcanic emissions		
H ₂ CO	$1.0 imes 10^{16}$	3/day for SZA $\leq 50^{\rm o}$ Observe biogenic VOC emissions, expected to peak at midday		
$C_2H_2O_2$	$4.0 imes 10^{14}$	2/day for SZA $\leq 50^{\rm o}$ Track urban and fire emissions		

*Sensitivities for lowest 1 km. Clouds and aerosol products not discussed here.

BrO, and H₂O will also be measured well!

TEMPO O₃ and trace gas retrieval and sensitivity study tools

- Radiative transfer tool to calculate scattering weights, Jacobians, AMFs, and radiances from synthetic atmospheres using the VLIDORT RTM
 - 18 **GSFC** atmospheres studied for O₃ and trace gases (HCHO, NO₂, SO₂, CHOCHO).
- For trace gases:
 - Albedos 0-1, SZA 0-90°, wavelengths 280-900 nm.
 - Finalize measurement requirements from STM species, sensitivities, footprint, and temporal, geographic, and SZA coverage.
- Fitting studies address tradeoffs between S/N and spectral resolution.
 - improved noise model, S/N proportional to [radiance]^{1/2}; window averages of S/N given in plots and requirements
 - cross sections normalized to AMF for direct vertical column retrieval

Radiances from GSFC NY-12 model and SAO2010 irradiance

Measurement Requirements

Molecule	SO ₂	NO ₂	H ₂ CO	$C_2H_2O_2$
Fitting Window (nm)	305-330	423-451	327-356	433-465

Measurement requirements come from full multiple scattering calculations with VLIDORT, including gas loading & aerosols (GSFC NY12 atmosphere), an 0.03 albedo, and are for fitting to concentrations in the lowest 2 km.

Full-up fitting studies comparing spectral resolution and signal-to-noise ratio then give:

GEO-CAPE NO, fitting, 70.00° SZA

GEMS SO,, Seoul @ 50° SZA

GEMS H₂CO, Seoul @ 50° SZA

Three examples of nearly clear-sky retrieval averaging kernels (sensitivities of retrievals to the true state), for pixels (1)-(3) indicated on previous figures. (d)-(e) are the same as (a)-(c) but under ideal conditions (i.e., without interferences from other parameters). These AKs have been normalized by the actual ozone variability (i.e., a priori error). The symbols indicate the altitude of the averaging kernels. The dotted black horizontal lines indicate the tropopause. The caption on top of each of panel shows solar zenith angle, cloud fraction, and surface albedo

TEMPO Instrument Concept

- Spatial resolution: 2 km N/S × 4.5 km E/W native resolution (9 km²)
 - Co-add/cloud clear for some products
- Band pass and spectral resolution: 290-690 nm @ 0.6 nm FWHM, 0.2 nm sampling
- Field of regard: Mexico City to the Canadian tar ("oil") sands, Atlantic to Pacific
- Data products and sampling rates: NO₂ sampled hourly; O₃, H₂CO and C₂H₂O₂ 3 times/day (hourly samples averaged to get required S/N), except that eXceLO₃ for selected target areas may be sampled hourly; SO₂ 2 times/day. Aerosol and cloud products are sampled hourly.
- Signal-to-noise ratio (S/N) values from standard radiances that have been delivered from SAO to BATC and GSFC.
 - 70° SZA for NO₂, 50° for other standard products.
 - Address beginning of life versus end of life S/N values

TEMPO Mission Concept

- Geostationary orbit, 90-110° W preferred, 80-120° W acceptable BATC is currently surveying COMSAT companies for specifications on the satellite environment and launch manifests to see what platforms will become available.
- Full measurement and telemetry duty cycle for ≤70° SZA
- Standard products: NASA TOMS-type O₃; SO₂, NO₂, H₂CO from AMFnormalized cross sections; AAI; RRS cloud. SAO eXceLO₃ included for selected geographic targets.
 - Non-O₃ gas algorithm model is SAO operational OMI code currently running @ GSFC DISC; TOMS-type O₃, AAI and RRS cloud are also from OMI operational model.
- Secondary products: eXceL O₃ for broader regions; BrO and C₂H₂O₂ from AMF-normalized cross sections; H₂O, height-resolved SO₂; additional aerosols (TBC; this is currently the largest unknown); alternate cloud products.
- Higher-level products: pollution/AQ indices from standard products, possibly including city light maps, distributed broadly in near-real-time.
- All proposed TEMPO measurements have been made from existing LEO satellite instruments to the required precisions
- All TEMPO launch algorithms are implementations of currently operational satellite algorithms

Default Launch Data Products

Product	Algorithm	Hourly Coverage @ $\leq 4.5 \times 8 \text{ km}^2$
O ₃	TOMS-Vn	15 - 50.25°N, 60 - 130°W
O ₃	XL optimal estimation	Selected urban areas and burning regions
NO ₂	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
SO ₂	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
H ₂ CO	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
$C_2H_2O_2$	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
Aerosol OD and SSA	AERUV	15 - 50.25°N, 60 - 130°W
Cloud pressure and fraction	CLDRR	15 - 50.25°N, 60 - 130°W
UBV and Eryth. dose	UVB (?)	15 - 50.25°N, 60 - 130°W
AQ indices	L3-L4 based	15 - 50.25°N, 60 - 130°W

Secondary and Improved Data Products

Product	Algorithm	Hourly Coverage @ ≤ 4.5 × 8 km²
O ₃	XL optimal estimation	15 - 50.25°N, 60 - 130°W (or, extended regions)
BrO	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
H ₂ O	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
$C_2H_2O_2$	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
Aerosols	AERUV	15 - 50.25°N, 60 - 130°W
Clouds	CLDRR	15 - 50.25°N, 60 - 130°W
SO ₂	Height-resolved	15 - 50.25°N, 60 - 130°W
NO ₂	Improved	15 - 50.25°N, 60 - 130°W

