

MAX-DOAS measurements of urban air pollution from an elevated mountain site: Technical setup and experience from the first two years of observations.

Jochen Stutz^{1,2}, Ross Cheung^{1,2}, Stanley P. Sander^{2,3}, D. Chen², and Q. Li^{1,2}

¹Department of Atmospheric and Oceanic Sciences, UCLA ²Joint Institute for Regional Earth System Science and Engineering, UCLA ³NASA Jet Propulsion Laboratory, Caltech

Motivation

0.40

0.30

Maximum Concentratio

- Longterm observation of spatial and temporal distribution of trace gases in an the Los Angeles airshed, to:
 - Monitor levels of pollutants (NO₂, HCHO, SO₂, aerosol)
 - Improve air quality and regional models
 - Validate and improve emission inventories, in particular for NO_X and GHG

- Owned by NASA's Jet Propulsion Laboratory
- Mt. Wilson, CA, with a near full view of the LA basin
 - Latitude: 34° 13' 28" N
 - Longitude: 118° 3' 25" W
- Altitude: 1706 meters ASL
 Mostly above the boundary layer

Instruments:

- UCLA Multi-Axis Differential Optical Absorption Spectrometer
- JPL Near-IR Fourier Transform Spectrometer
- Meteorological measurements
- Various in-situ instruments

Measurements started in mid-May 2010 and are continuing

Viewing Geometries

UV-vis Azimuth	147.4°, 160°, 172.5°,
Angles	182°, 240.6°
UV-vis Elevation	-10°, -8°, -6°, -4°, -2°, 0°,
Angles	3°, 6°, 90°

The Mt. Wilson MAX-DOAS

- 2π scanner / Field of view: 0.4°
- Acquisition time: 45 seconds
- DOASIS for aquis. + retrieval

Pikelnaya et al., 2007

- 300mm Czerny Turner Spectrometer, 600 g/mm grating Optimized for low straylight by addressing
 - re-entrant light UV bandpass filter (Schott UG5)
 - → Straylight (with Xe-arc Lamp) between 300-420nm < 0.16% (not counting reflection on detector window)
- Thermally stabilized to ±0.1 K (~0.1 pixel per K drift)
- Spectral Resolution: 0.7nm
- •Two wavelength ranges UV (335-465 nm) visible (465-595 nm)

Detector

Hamamatsu Photodiode Array 1024 pixel

•Cooled to -20 \pm 0.1° C

•Linearity better than 0.3%

- •Auto-exposure to maintain saturation level (commonly used now!)
- Higher readout-noise compared to CCD, but higher capacity

Combined linear non-linear least squares fitting (Platt and Stutz, 2008) with temporally close Zenith reference, Ring and various trace gas absorptions

Species	Scan	Wavelength	Fitted Spectral References	Detection Limit
		Interval (nm)		
O ₄	UV	350-390	NO ₂ , O ₄ , HCHO, HONO	7*10 ⁴¹ molec ² /cm ⁵
O ₄	Vis	464-506.9	NO_2 , glyoxal, O_4 , H_2O	8*10 ⁴¹ molec ² /cm ⁵
O ₄	Vis	519.8 - 587.7	NO_2, O_4, O_3, H_2O	5*10 ⁴¹ molec ² /cm ⁵
НСНО	UV	323.4-350	HCHO, O ₄ , O ₃ , HONO	$5*10^{15}$ molec/cm ²
NO ₂	UV	323.4-350	HCHO, O_4 , O_3 , HONO	$3*10^{15}$ molec/cm ²
NO ₂	UV	419.5-427.9 &	NO ₂ , glyoxal, O ₄ , H ₂ O	$1*10^{15}$ molec/cm ²
		432.4-447		
NO ₂	Vis	464-506.9	NO ₂ , glyoxal, O ₄ , H ₂ O	$1*10^{15}$ molec/cm ²
NO ₂	Vis	519.8 - 587.7	NO_2, O_4, O_3, H_2O	$2*10^{15}$ molec/cm ²
After 1/2011				
NO ₂	UV	332.8-377.8	HCHO, O_4 , O_3 , HONO	$2*10^{15}$ molec/cm ²
NO ₂	UV	416.3-456.6	NO_2 , glyoxal, O_4 , H_2O	$1*10^{15}$ molec/cm ²
НСНО	UV	332.8-377.8	HCHO, O_4 , O_3 , HONO	$2*10^{16}$ molec/cm ²

 O_4 : Hermans et al, 1999, O_3 : Voigt et al. 2001, NO_2 : Voigt et al., 2002 H_2O : HITRAN, glyoxal: Volkamer et al. 2005, HCHO: Cantrell et al. 1990, HONO: Stutz et al., 2000

• Slant Column Density (SCD) :

$$SCD = \int_0^L c(s) \cdot ds$$

• UV-vis Differential slant column densities (DSCD) obtained by removing temporally close zenith zenith

$$DSCD = SCD_{off-axis} - SCD_{zenith}$$

Example of Differential Box Air Mass Factors for MAX-DOAS in the UV

Wavelength Dependence of UV-Vis DSCD

Example of DSCD Wavelength dependence

Obtaining NO₂ and O₄ DSCDs at different wavelengths adds valuable information on spatial extent and radiative transfer

May 31, 2010 time (UTC)

Cloud Filtering

Application: Comparison with WRF-Chem

WRF-Chem model:

- 4x4km resolution,
- assimilated Meteorology
- Chemistry CBMZ
- Aerosol: MOSAIC(4 bin)
- Adjusted 2005 ARB EI
- Validated for CalNex

Modeled Vis Aerosol Extinction (km⁻¹)

• Surprising good agreement for downward viewing angles

• Agreement in upper angles less good due to poor description of background aerosol.

- Most NO₂ in boundary layer
- Model NO₂ higher than observations \rightarrow emissions too high

HCHO/NO₂ as a measure of ozone sensitivity

- HCHO/NO₂ can be used to determine ozone sensitivity to NOx and VOCs [Martin et al., 2004 and Duncan et al., 2010]
- Duncan et al suggests HCHO/NO <1 in VOC-limited regimes and >2 in NO_x-limited regime.
- Highly constrained field observations during CalNex suggest the turnover point for Los Angeles is HCHO/NO₂ ~ 0.55

As the vertical distribution of HCHO and NO_2 is similar UV observations can be use to determine this ratio without RT calculations

MAX-DOAS HCHO/NO₂ ratio for CalNex LA

Clear Difference between Weekday and Weekend

MAX-DOAS HCHO/NO₂ ratio for two years

Retrieved in same wavelength range \rightarrow no RT effects Values between noon and 3pm local time

"Weekend effect" has been previously reported, where O_3 and NO_x levels reflect differences in driving patterns between weekdays and weekends

FIGURE 3. Change in statewide NO_x emissions from California onroad vehicles between 1990 (upper trace) and 2000 (lower trace). Values shown are the sum of gasoline and diesel engine emissions.

(Figure from Harley et al., 2005)

Annual Hourly Average NO₂ DSCD's

Lower NO_x on Weekends

Annual Hourly Average HCHO DSCD's

NO difference between Weekend and Weekday

- Mountain-top remote sensing combined show great potential for monitoring of pollutants (and greenhouse gases).
- Direct comparison of the modeled with observed NO₂ looks promising.
- Longterm data gives insight into the NO_x/VOC sensitivity of ozone formation, the weekend effect, and longterm changes in NO_x and HCHO.
- Potential for satellite validation remains to be explored.
- Mountain sites can be a good test location of airborne or spaceborne instruments.

NASA Jet Propulsion Laboratory for the use of CLARS

NOAA CARB for funding