Deriving the Reflectance and Properties of Land Surfaces from GEMS: Methodology, Sensitivity, Requirements, and Validation

Jung-Moon Yoo

Ewha Womans University

Myeong-Jae Jeong Gangneung-Wonju National University

Outline

Sensor/Measurement requirements

Surface reflectance (R_{sfc}) Requirements

➢Algorithm development
 Surface reflectance (R_{sfc})
 Cloud-screening
 Surface property (→Detection of vegetated surfaces)

>Validation plan

Goal: Providing Accurate Boundary Conditions for Physical Models

- <u>Energetics</u>:
 - relating limited measurements of angular reflectance to flux albedo a crucial input parameter to climate/environment models.
- <u>Remote sensing</u>:
 - characterizing surface anisotropy to interpret off-nadir radiances acquired by satellite sensors (e.g., for retrievals of aerosols and trace gases).

• **Theory:** Simple definition,

 $R_{sfc}(\lambda, \theta, \phi; \theta_0, \phi_0; t, x, y) = \frac{I(\lambda, \theta, \phi; \theta_0, \phi_0; t, x, y)_{reflected}}{I(\lambda, \theta_0, \phi_0)_{incident}}$

but complicated multi-dimension (4~8) problem! → Bidirectional Reflectance Distribution Function (BRDF)

• **Reality:** at all-scale inhomogeneity

mixture ofseasonaldiverse biomes,transitionssfc moisture, etc.

fine sand, rocks,vegetation, snow,gravel, shrub,small waterdunes, etc.bodies

Sensor/Measurement Requirements for R_{sfc} Derivation

Signal-to-Noise Ratio (SNR) Required for R_{sfc} Retrievals

λ (µm)	Nominal Radiance (Wm ⁻² µm ⁻¹ Sr ⁻¹)	Required SNR [#]
0.34	52.2	840
0.38	50.6	498
0.47	56.1	230
0.50	47.1	196
0.63	28.4	134

#SNR required to maintain NE∆R_{sfc}=0.001 → Precision of SNR = L_n / NE∆L_n = ρ^*_n / NE∆ ρ^*_n derived R_{sfc} L_n: nominal radiance at TOA ρ^*_n : nominal apparent reflectance

Simulation conditions: SZA=60°, VZA=45°, RAA=65°, Total O₃=300DU, No aerosol

*R*_{sfc} Error with Input TOA Radiance Errors of ±4%

Absolute Error

 \rightarrow Given the errors of TOA radiance, the higher the true R_{sfc} , the larger the absolute errors of the derived R_{sfc} . \rightarrow In general, the errors of derived R_{sfc} decrease with increasing λs.

R_{sfc} Requirements for Data Products in the Downstream

Sensitivity Test

Effects of R_{sfc} errors to aerosol retrievals

When simultaneous OBSs of MODIS R_{TOA} & AERONET AOT are available, the aerosol correction for deriving R_{sfc} from the R_{TOA} can be done using the AOT. Based on the R_{sfc} with systematic errors, we re-calculate MODIS AOT. For climate study, AOT error need be <0.1 $\Rightarrow R_{sfc}$ error < 1~2%, according to the sensitivity test.

Sensitivity of AOT Retrievals to Errors in R_{sfc}

R_{sfc} Estimation Adopted for Operational Aerosol Retrievals

R_{sfc} Estimation for MODIS Dark Target Aerosol Products over Vegetated Land Sfcs (Levy et al., 2007) :

✓ Employed empirical approach using a mid-IR (2.1micron), where aerosol influence is often negligible.

- \checkmark Angular anisotropy of R_{sfc} is implicitly accounted for.
- ✓ Larger than 1% of R_{sfc} errors occur often.

 Requirements are usually determined by higher level products (e.g., surface albedo: 2-5%[#], NDVI: 3%[#] for MODIS; aerosol retrieval ~2%)

- Accuracy is primarily limited by the accuracies of
 - satellite sensor calibration
 - input atmospheric parameters (e.g., aerosol, trace gas, atmospheric pressure, etc.)
 - RTM used for forward simulations
 - cloud / cloud-shadow screening

[#] From whitepaper by E. Vermote.

The Algorithm: Flow Diagram for R_{sfc} Derivation (Plan for GEMS, Work-in-progress) **Calibrated Level 1** Spectral R_{TOA} A proto-type (selected wavelengths) algorithm for selected **Atmospheric** wavelengths <--No Cloud ? (Rayleigh + Gas) is to be built corrections by the end of Yes this study period. Absorbing Snow/Ice? aerosols? No No Yes Yes **Discard Data** Data fitting to **Build histogram &** Data **BRDF** model find R_{min} accumulation (BRDF parameter)

Possible Scenario for GEMS mission

- Initial stage
 - Existing R_{sfc} data (e.g., OMI) may be used for any application that requires R_{sfc} as input
 - Existing data may be fitted to BRDF model(s) to account for differences in observation geometry between different satellites
- Intermediate / latter stage of mission
 - Use R_{min} search method* (+ histogram method to remove outliers)
 - BRDF parameters may be derived

*<u>Minimum reflectance (R_{min}) search method</u>: 1) divide earth surface into grid boxes; 2) accumulate Rayleigh-corrected TOA reflectance data at target wavelengths; 3) search for a minimum value in each grid to ensure minimum aerosol influence.

Example: Derivation of R_{sfc} by Searching 'R_{min}' at a **Given Location**

412nm

Can we use an average of the lowest 2-20 percentile of Rayleigh-corrected reflectance as R_{sfc} ? \rightarrow Threshold to be determined empirically.

Figures from Corey Bettenhausen at NASA GSFC

→ RGB image from 1km resolution MODIS data

→RGB image from aggregated
 pixels with 10km resolution
 →Blurry small-scale clouds and
 surface features

→ Cloudy pixels in red. Cloudmasking based on combination of reflectance threshold and spatial variability of visible bands. →Results with same cloudmasking applied to 10km data.
→Missing small-scale clouds and losing some non-cloudy pixels. Estimating Surface Properties from GEMS Observations: Scene Identification (e.g., Detecting vegetated areas)

Typical Approaches:

✓ RGB Image: Qualitative based on visual examination

 ✓NDVI (Normalized Difference Vegetation Index) NDVI = (NIR-Red)/(NIR+Red)
 → An NIR (and Red?) band is out of the spectral coverage of GEMS

 ✓ Need a Method for GEMS (assumption: 300nm-630nm spectral coverage) ?

Generalized Spectral Reflectance Envelopes for Deciduous and Coniferous Trees

Figure adapted from Lillesand et al. (2004; Kalensky and Wilson, 1975)

Generalized Spectral Reflectance Envelopes for Deciduous and Coniferous Trees

Figure adapted from Lillesand et al. (2004; Kalensky and Wilson, 1975)

Detecting Vegetated Areas: RGB Image & NDVI RGB Image NDVI

NDVI Map: 1) Vegetated surfaces shown in green/yellow/red; 2) Clouds and arid/semi-arid surfaces in blue/purple/black.

Visible Vegetation Index v.s. NDVI

Visible Vegetation Index (VVI) NDVI

✓ Similar general distribution patterns between VVI index and NDVI.
 ✓ Similar sensitivity of VVI for clouds with NDVI, but VVI seems to bear a weaker sensitivity to barren surfaces.

Visible Vegetation Index v.s. NDVI

→It seems possible to link VVI to NDVI, but it should be noted that there is significant spatial-resolution dependency of the relationship between VVI and NDVI. → Further investigation is necessary.

Validation Methods for R_{sfc}

- Ground-based Measurements
 - ✓ Relatively-low / Moderate cost
 - ✓ *Relatively short data reduction processing required*
 - Point-wise measurements, not representative to a large area
 - ✓ Manual-intensive to cover large areas
- Air-borne Measurements
 - ✓ Higher cost
 - ✓ Moderately large spatial coverage
 - ✓ Requires diverse manpower
 - ✓ Need intensive post-measurement processing

***** Atmospheric Correction with a priori Aerosol Information

- Lowest cost when using existing aerosol measurement systems (e.g., AERONET)
- Relatively homogeneous and low aerosol loading are required.

(1) Ground-based Measurements

Photos courtesy of Si-Chee Tsay

uisitions of Bidirectional oservations of Land and

ASD FieldSpec Pro attached to telescope mount

(2) Air-borne Measurements

(3)-a Atmospheric Corrections: Sun-photometer (e.g., AERONET) + Satellite Observatio

King et al., 1986

(3)-b Atmospheric Corrections: Hand-held Sun-photometer + Satellite Observations

Photo from http://aeronet.gsfc.nasa.gov/

Model 540 MICROTOPS II A 5-channel hand-held sunphotometer for measuring aerosol optical thickness (AOT) with a GPS system to automatically acquire observation time and altitude information.

 Spectral configurations: 340, 440, 675, 870, 936nm → (4 aerosol + 1 water vapor channels)

• Uncertainty of AOT in each channel < 0.02.

→ One set (and more in the future) of this instrument will be utilized to produce validation datasets.

<u>Summary</u>

Considering the necessary accuracy of downstream data products (e.g., aerosols), R_{sfc} accuracy requirement is estimated to be around 1-2%.

* Surface properties (e.g., detection of vegetated area) can be estimated if spectral coverage is extended to red λ s (e.g., ~630nm)

Strategy, technique, and instrument for validation are being prepared.