A decade of MAX-DOAS observations in Asia & Russia (MADRAS) since 2007:

Progress in OMI Tropospheric NO2 validation & synthetic analysis

Yugo Kanaya¹, M. Nodzu¹, K. Miyazaki¹, H. Irie², H. Takashima^{3,1}, M. Gu^{4,5}, J. Chong⁴, Y-J. Kim⁴, H. Lee^{4,6}, A. Li⁷, F. Si⁷, J. Xu⁷, P-H. Xie⁷, W-Q. Liu⁷, A. Dzhola⁸, O. Postylyakov⁸, V. Ivanov^{8,9}, A. Borovski⁸, E. Grechko⁸, KORUS-AQ team

¹ JAMSTEC, ²Chiba U., ³Fukuoka U., ⁴GIST, ⁵Max Planck Institute, ⁶Pukyong U., ⁷AIOFM/CAS, ⁸IAP/RAS, ⁹Belarusian State U.

Tomsk **Zvenigorod** T(C) Gwangju ; Collect long-term obs. of TropoNO₂VCD okosuka and AOD with standardized MAX-DOAS instruments Cape Hedo over Japan, China, South Korea & Russia with different pollution levels to validate satellite observations & global chemical transport model

Kanaya et al. 2014; Irie et al., 2008a,b, 2011 etc, Takashima et al., 2009, 2011

AMSTE

http://ebcrpa.jam stec.go.jp/maxdo ashp/

Principle of MAX-DOAS observations

-MAX-DOAS: Multi-Axis Differential Optical Absorption Spectroscopy Multiple axes: More information content than satellite (e.g., vertical profile) Simultaneous O_4 measurements: optical path length or aerosol (cloud) information

TropoNO2 VCD

Month-Year

Yokosuka

Gwangju

Hefei

Fukue

TOTAL

Cape Hedo

Zvenigorod

http://ebcrpa.jamstec.go.jp/maxdoashp/

		Data set				
N (30 min)		site (latitude, longitude)	surface and azimuth instrument elevation (N=0, (m, asl) E=90)	operation period instrument no.	year	figures, recommendations
		Yokosuka (35.32N, 139.65E)				
45441	quality has not fully been understood yet. It is recommended to contact Yugo Kanaya (yugo@jamstec.go.jp) before use for publication. Please report a progress as often as proscible.			1		s recommended nd extinction
29814	doy[UTC] vear fitresmax AOD AEC_l1[km+1] AEC_l2[1 1.028461 2010 1.02E-03 -939.9 -939.9 -939.9 -939.9 1.048294 2010 1.06E-03 -939.9 -939.9 -939.9 -939.9	m-1] AEC_L3[km-1] NO2VCD[-999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9	[cm-2] N02_L1[cm-2 289.6 1021.0 2.5 289.6 1020.8 2.9	2] NO2_L2[cm-2] NO 528 00100001 928 00100001	2_L3[cm-2] T[K] P[hPa] CI totalflag	
21051	1.070127 2010 6.81E-04 4.478E-01 1.658E-01 1.090961 2010 8.11E-04 2.825E-01 1.539E-01 1.11794 2010 1.16E-03 3.193E-01 1.64EE-01 1.32627 2010 7.51E-04 2.869E-01 1.629E-01	2.383E-01 3.504E-02 1.052E-01 1.895E-02 1.269E-01 2.235E-02 1.009E-01 1.843E-02	8.328E+14 5.0 7.792E+14 4.9 6.803E+14 4.0 7.258E+14 4.5	330E+14 2.642E+14 313E+14 2.344E+14 382E+14 2.177E+14 381E+14 2.195E+14	5.263E+13 289.7 1020.6 2.308 00 4.370E+13 289.8 1020.4 1.566 00 4.354E+13 289.8 1020.2 1.544 00 3.961E+13 289.9 1020.0 1.540 00	0000000 0000000 0000000 0000000 0000000
7305	1.153461 2010 1.08E=03 3.779E=01 1.954E=01 1.174294 2010 8.34E=04 4.092E=01 2.108E=01 1.195127 2010 1.21E=03 3.678E=01 1.757E=01 1.215961 2010 5.72E=04 6.546E=01 2.336E=01	1.506E-01 2.547E-02 1.638E-01 2.806E-02 1.605E-01 2.528E-02 3.598E-01 4.897E-02	4.676E+14 2.8 6.664E+14 3.9 6.370E+14 3.9 4.776E+14 2.8	383E+14 1.445E+14 154E+14 2.141E+14 144E+14 1.963E+14 166E+14 1.528E+14	2.812E+13 289.9 1019.8 1.560 00 4.506E+13 290.0 1019.6 1.622 00 3.758E+13 290.1 1019.4 1.796 00 3.057E+13 290.1 1019.4 2.101 00	0000000 0000000 0000000 0000000
8946	1.236/34 2010 1.07E-03 -3981.3	-999.9 -999.9 -999.9 -999.9 1.810E-01 2.981E-02 1.398E-01 2.573E-02 1.178E-01 2.324E-02 1.235E-01 2.324E-02	290.2 1019.0 2.2 9.156E+14 6.5 5.787E+14 3.5 -999.9 -999.9 -99 -999.9 -999.9 -99	82 00100001 28E+14 2.286E+14 335E+14 1.826E+14 19.9 -999.9 290.0 10 19.9 -999.9 290.0 10	2.994E+13 290.2 1018.9 1.968 00 3.446E+13 290.1 1019.0 1.679 00 19.1 1.781 00000001 9.1 2.189 00000001	2.41, and 1.55 nent 1, 2, and 3) mended for AOD tion profile.
20198	1.965961 2010 1.79E-03 -939.9 -939.	-999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 8.586E-02 1.594E-02 1.161E-01 2.157E-02	291.3 1018.3 3.0 291.4 1018.2 2.7 6.688E+14 4.8 6.799E+14 4.1	002 00100001 717 00100001 888E+14 1.589E+14 123E+14 2.148E+14	1.869E+13 291.4 1018.1 1.918 00 4.242E+13 291.5 1017.8 1.375 00	0000000
132755	2.0449294 2010 1.40E-U3 3.686E-01 1.313E-01 2.070127 2010 7.92E-04 -9393.9 -9393.9 -9393.9 -9393.9 2.050061 2010 8.64E-04 -9393.8 -9393.9 -9393.9 -9393.9 2.111734 2010 7.27E-04 -9393.9 -9393.9 -9393.9 -9393.9	1.467E-01 2.529E-02 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9 -999.9	7.194±+14 4.3 291.7 1017.1 2.7 291.8 1016.8 2.8 291.9 1016.4 2.6 200.0 1016.4 2.6	316E+14 2.302E+14 711 00100001 368 00100001 362 00100001 720 00100001	4.604±*13 291.6 1017.4 1.985 00	nent 1, 2, and 3) mended for AOD tion profile.
	2.15262 2010 9.302*04 *398.9 *398.3 *398.3 *398.9 *398.3 *398.9	-393, 3 -393, 3 -393, 3 -393, 3 -393, 3 -399, 9 -999, 9 -999, 9 -999, 9 -999, 9 4,049E-01 4,518E-02 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9 -999, 9	292.0 1016.1 2.6 292.1 1015.8 2.9 8.575E+14 5.6 292.3 1015.1 2.9 292.4 1014.8 2.8 292.5 1014.4 2.8	947 00100001 996E+14 2.368E+14 120 00100001 1394 00100001 1375 00100001	4.268E+13 292.2 1015.4 2.929 00	0000000 and 2.01 (for : 1 and 2) are id for 400 and

Verification of MAX-DOAS NO₂ meas.: KORUS-AQ 2016

TropoNO2VCD at Fukue & Gwangju: Long-term variation

6

Trend, Yokosuka (urban)

- Decrease in NO₂ levels, recently slowed
- HCHO flattened earlier and even increased in 2016.
- O₃ prod. regime would remain VOC-limited but shift toward NOx-limited side

OMI TropoNO2VCD validation: AOD & vertical profile shape dependence Aerosol shielding effect? (AK was not considered)

Renewed OMI DOMINOv2 TropoNO2VCD validation: Vertical profile shapes at Yokosuka (TM4 vs. MAX-DOAS)

OMI DOMINOv2, level2 data,

Δlat, long< 0.15°, Δt<1h, cloud fraction(cf) <0.3, Year= 2007-2014

Renewed OMI DOMINOv2 TropoNO2VCD validation: with Averaging Kernel considered

OMI/MAX-DOAS ratio got closer to unity, but OMI's underestimation remained. Both dependence on AOD and v_1 slightly weakened. AOD dependence (shielding effect) persisted with cf<0.03: consistent with theoretical calculations (POMINO)

OMI-to-MAXDOAS comparison at Yokosuka: Significant gap remained during wintertime

Significant gap in winter, associated with low wind speed. Spatial inhomogeneity to be studied with TROPOMI 0.05 0.04

0.035

0.025

0.02

0.015

0.01

NO2 (25 m) [ppmv], 11-15 LT, 06.Aug.08

36.6N

36.4N

OMI observes day-to-day variation (Yokosuka)

※OMI TropoVCD recalculated with MAX-DOAS shape

Summary

- MADRAS network continues to derive decadal variations in NO₂ & HCHO etc. and ground-truth into TROPOMI (ESA, NIDFORVal) & GEMS era.
- MAX-DOAS retrievals were evaluated during KORUS-AQ.
- Aerosol shielding effect: verified with clear sky data (cf<0.03) after AK applied.
- Fusion of MAX-DOAS and satellite obs. to derive surface NO₂: its variations were well captured from OMI satellite (May-Aug) at Yokosuka, when adequate vertical profile was inputted. Extrapolation to Kanto area map is ongoing.

Acknowledgement

free use of tropospheric NO₂ column data from the OMI sensor from <u>www.temis.nl</u>, and from NASA. QDOAS software from BIRA-IASB. Coordination Funds for Promoting AeroSpace Utilization, MEXT, Japan