

SAO long-term satellite data records of HCHO, CHOCHO and water vapor: synergies with the GEMS and TEMPO missions

Gonzalo Gonzalez Abad¹, Chris Chan Miller¹, Kang Sun^{1,2}, Yeonjin Jung¹, Lei Zhu^{1,3}, Nassika Dabel^{1,4}, Ewan O'Sullivan¹, Caroline Nowlan¹, Huiqun

Wang¹, Xiong Liu¹ and Kelly Chance¹

1. Harvard-Smithsonian Center for Astrophysics

2. University of Buffalo, SUNY

3. Harvard University

4. University of Massachusetts Lowell

9th GEMS Science Team Meeting, October 1st, 2018

Talk outline

- SAO heritage: 20 years of HCHO, CHOCHO and H₂O retrievals
- The need for harmonization
- MEaSUREs project for HCHO, CHOCHO and H₂O
 - Homogenized retrievals
 - Instrument stability/inter-calibration
 - AMF calculations
 - Gridded products
 - Validation
- Conclusions

SAO heritage: 20 years of HCHO, CHOCHO and H₂O retrievals

MOLECULE	SENSOR	PUBLICATIONS	
НСНО	GOME, OMI, OMPS	(Chance et al. 2000, Kurosu et al., 2004, Gonzalez Abad et al., 2015, 2016)	
СНОСНО	OMI	(Miller et al., 2014)	
H ₂ O	OMI	(Wang et al., 2014, 2016)	

NASA

Starting with the design of GOME and SCIAMACHY the SAO group has made essential contributions to algorithm developments for trace gas retrievals using UV-VIS backscattered solar radiation

The need for harmonization

- The long-term stability of OMI has allowed the development of trend analysis of NO₂ and HCHO
- Fusion of data series from different sensors will increase the capabilities to perform multi-decadal trend analysis

NASA

Smithsonian

MEaSUREs project for HCHO, CHOCHO and H₂O

The oxidation of VOCs plays an important role in air quality and climate H_2O is an ECV, with impacts on the climate system

NASA

Smithsonian

MEaSUREs project for HCHO, CHOCHO and H₂O

The temporal overlap between the this MEaSUREs project, TEMPO and GEMS missions offers a great opportunity for synergies between them to test algorithms, validation schemas and consistent dataset formats

Homogenized retrievals

- Base code for all algorithms will be shared with TEMPO
- Level 2 and level 3 files will be standardized across MEaSUREs products and TEMPO
- Improved algorithm traceability chains and error characterization incorporating experiences from past projects such as QA4ECV (Boersma et al., 2018)
- Retrieval setting optimization due to instrument differences will have two phases:
 - 1st will optimize retrievals with overlapping validation data (OMI, GOME-2A/B and OMPS)
 - 2nd will use correlative analysis to optimize the retrievals settings for earlier instruments (GOME, SCIAMACHY)

Instrument stability / intercalibration

- Characterization of drifts in instrument performance over time is crucial to construct long-term trends and seasonal cycles.
- Calibration will be achieved via correlation with high resolution solar spectra (Sun et al., 2017) as demonstrated with OMI.

Sun et al., 2017

AMF calculation

- Air Mass Factor calculations are the main source of error in current retrievals.
- Compute AMFs with online radiative transfer calculations and upgraded datasets.
- Improved error characterization (surface reflectance, clouds, aerosols and profile shape)

Daily shape factors GEOS-Chem and MERRA2

Reflectance comparison with OMI

AMF algorithm will use BRDF climatology that combines information from MODIS, SCIAMACHY, and USGS datasets

Gridding algorithm

- We will produce level 3 products based on a new physics-based gridding approach that properly accounts for instrument footprint (Sun et al., 2018)
- Goals:
 - Mitigate effect of noise levels in HCHO and CHOCHO products
 - Facilitate

 intercomparisons
 between instruments
 with different spatial
 and temporal
 resolution
 - Trend analysis

Sun et al., 2018

Smithsonian

Validation

- Validation studies are a key component of our strategy to derive consistent and accurate products.
- We will use a mix of ground-based and in-situ (aircraft and sondes) measurements.
- HCHO will also include column observations from NDACC (FTIR-VIS-UV) and Pandonia networks Mean (OMI - GPS) (mm)

Product	Correlative data set	Period covered	Geographic coverage
	MILAGRO ^{1,2}	Mar. 2006	Mexico City
нсно, сносно	DISCOVER-AQ ^{1,2}	Jul. 2011, Sep. 2013, Feb. 2013, Jul. – Aug. 2014	Maryland, Texas, California, Colorado
& H ₂ O	SENEX ¹	Summer 2013	Southeast US
	SEAC ⁴ RS ^{1,2}	Aug. – Sep. 2013	Southeast US
	CONTRAST ^{1,2}	Jan. – Feb. 2014	West Pacific
	KORUS-AQ ¹	May. – Jun. 2016	Korea
	NCAR GPS ³	1995 – present	Global
	AERONET ³	1993 – present	Global
H ₂ O	RSS microwave ⁴	1987 – present	Global
	GRUAN ⁵	2009 - present	Global

1. Aircraft campaign; 2. HCHO and H₂O only; 3. Ground-based remote sensing; 4. Satellite remote sensing; 5. Radiosonde

Wang et al., 2016

mithsonian

- ➢ We are developing long-term intercalibrated HCHO, CHOCHO and H₂O products from 6 sensors
- By design this project is a robust and rigorous testbed of TEMPO trace gas algorithms
- ➢ Validation studies will provide global baseline datasets to link TEMPO, GEMS and Sentinel 5 as well as inform best practices for their validation
- Coordinated development of algorithms with TEMPO will simplify testing and implementation of upgrades to TEMPO algorithms

Thanks for your attention

Questions?

We will like to thank NASA for their support throughout ACMAP Aura, TASNPP and MEaSUREs grants. We will also like to thank the TEMPO and OMI Science teams.