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Goals of research 

 

 Main goal of this multi-year project is to develop a chemical transport data 

assimilation (DA) system for assimilation of data from the environmental 

satellite in Korea.  

 

 Regional, high-resolution ensemble data assimilation will help maximize the utility 

of the future satellite chemistry data. Nonlinearities of satellite observation 

operators need to be taken into account. 

 

 Develop and evaluate new ensemble system for chemistry data assimilation using 

simulated and real observations.   

 

 First year: Develop basic interfaces between the regional coupled atmosphere-

chemistry model and ensemble data assimilation. Assess the system in 

assimilation of simulated ozone observations, within an Observing System 

Simulation Experiments (OSSE) framework.  

 

 Following years: Continue by adopting a general forward operator for assimilation 

of real satellite radiance from the environmental satellite in Korea.  



Impact of atmospheric chemical constituents 

 Trace gases and aerosols interact with climate and weather by their 

direct impact on radiation, and by indirect impacts on clouds.  

 

 Relevant interactions between ozone, and weather and climate 

 

 Implications on air quality and long-range pollution transport  

 

 Need to improve understanding of atmospheric composition and to 

estimate distributions of surface sources and sinks of air pollution 



Necessity of Research 

 

 Atmospheric gases and aerosols have complex interactions that are 

impacted by  natural and human sources (such as traffic, power 

generation, industry and agriculture). Important to use high-resolution 

coupled atmosphere-chemistry modeling in order to realistically 

simulate pollution transport. 

 

 Major new information about atmospheric constituents comes from 

satellite measurements. New Korean Environmental satellite will 

provide  high-resolution atmospheric chemistry measurements that will 

create a unique opportunity to improve our knowledge and eventually 

the prediction of atmospheric chemical constituents.  

 

 Advanced data assimilation is required to address the  challenging 

problem of utilizing the atmospheric chemistry information from new 

satellites.  



Review of previous research:  

Data assimilation for Typhoon Sinlaku(2008) using MLEF+WRF 

(Kim et al. 2010, APJAS) 

Differences in surface pressure (hPa) 

between the experiments with and 

without data assimilation. Results for 

data assimilation cycles 2-7 are shown 

(from 0600 UTC 09 Sep 2008 to 1200 

UTC 10 Sep 2008). Black circle 

indicates typhoon location. 

Typhoon is always located in the 

area where the pressure was 

reduced due to data assimilation 

(blue). Note switch in the blue/red 

dipole in cycle 4, when typhoon 

makes a turn towards east. 



Review of previous research:  

 Carbon data assimilation - comparison of monthly mean fluxes 

(Lokupitiya et al. 2008, JGR) 

MLEF Carbon Tracker 

MLEF and Carbon Tracker (verification) produce comparable monthly fluxes 



Ground-based Verification 

 (NOAA Stage IV data) 

3DVAR, no AMSR-E,TMI 

(WRF-GSI) 

EDAS, with AMSR-E, TMI 

(WRF-EDAS) 

Surface precipitation short-term forecasts verification 

Accumulated rain during 15-22 September 2009 

in the Southeast flood region  - 3-hour forecasts 

Assimilation of precipitation-affected radiance  

improves short-term precipitation forecasts, in spatial pattern and intensity 

Review of previous research:  

Assimilation of all-sky AMSR-E and TMI radiances (Zhang et al. 2011) 



Reduction of errors due to data assimilation of MSG SEVIRI radiances 

Review of previous research:  

Assimilation of all-sky MSG SEVIRI IR radiances (Zupanski et al. 2011b) 

FG - OBS ANL - OBS OBS (10.80 m) 

MSG SEVIRI 10.80 m (W m-2 sr-1 cm) valid 16Z 18 Jan 2007 

• Kyrill: an extratropical wind storm in Europe in January 2007 

• Data assimilation cycle is 1 h 

• Control variable = (T, q, Qcloud, Qrain, Qice, Qsnow, Qgraupel) 

• WRF model with 15 km horizontal resolution (300x300x40) 

• All-sky radiative transfer based on CRTM and SHDOM 

• Maximum Likelihood Ensemble Filter (MLEF) 

• Ensemble size is 48 members 

Fast-moving storm 

12:12 UTC 

19:12 UTC 

METEOSAT imagery 18 Jan 2008 



Relevance to this project:  

All-sky radiance observation information content 

MLEF is capable of extracting maximum information from MW and IR all-sky radiances 

MW radiances: AMSR-E data assimilation (Erin, 2007) - WRF 3km 

(from Zupanski et al. 2011, J. Hydrometeorology)  
OBS 89v GHz Tb Wind analysis uncertainty (500 hPa) Degrees of Freedom for Signal 

(DFS) 

IR radiances: Assimilation of synthetic GOES-R ABI (10.35 mm) 

all-sky radiances (Kyrill, 2007) - WRF 15km  
(from Zupanski et al. 2011, Int. J. Remote Sensing) 

Cloud ice analysis uncertainy  Degrees of Freedom for Signal 

(DFS) 

METEOSAT Imagery valid at 

19:12 UTC 18 Jan 2007 



Overview of previous results 

 MLEF ensemble data assimilation has been successfully applied with 

Weather Research and Forecast (WRF) atmospheric model. 

 

 Applications to : 

 - Typhoon tracking and intensity 

 - Severe weather  

 - Wind storms 

 - Extreme precipitation and flooding 

 - Carbon tracking 

 

 Challenging nonlinear data assimilation of all-sky infrared and microwave 

satellite radiances has been successfully accomplished with MLEF. 



Strategy and Methodology 

 Develop a chemistry data assimilation system based on ensemble data 

assimilation and a high-resolution regional atmosphere-chemistry model. 

 Begin with assimilation of simulated observations to prepare for 

assimilation of real satellite observations from the future Korean 

environmental satellite 

 

 Coupled modeling system: Weather Research and Forecasting Chemistry 

(WRF-CHEM) model. 

 Ensemble data assimilation system: Maximum Likelihood Ensemble Filter 

(MLEF - Zupanski 2005; Zupanski and Zupanski 2006; Zupanski et al. 2008). 

 One of the unique characteristics of the MLEF is that it includes an 

unconstrained iterative minimization of the cost function with implicit Hessian 

preconditioning. This system can address highly nonlinear observation 

operators used for satellite chemistry observations. 



Iterations 

Observation Transformation Operator 

Ensemble + Control 

MINIMIZATION 

CONTROL VARIABLE UPDATE 

xf ; Pf 

xa; Pa 

WRF-CHEM Model 

Ensemble + Control 
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DA cycles 

Ozone observations  

and observation errors 

Ozone observations are 

new components added 

to the existing MLEF 

algorithm. 

MLEF-WRF-CHEM Flow Diagram 



MLEF Analysis: Generalization of Kalman Filter 

to include nonlinear observation operators  

In standard KF, the analysis is obtained by minimizing a  

quadratic cost function (i.e. with linear observation operators) 

Control theory viewpoint: 

Generalize KF to include nonlinear observation operators: 

 Minimize nonlinear (i.e. non-quadratic) cost function 

 Use best applicable minimization method 

 Build data assimilation around minimization 
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MLEF Analysis: Generalization of Kalman Filter 

to include nonlinear model operators 

In KF, the forecast error column is a forecast of the analysis error column 
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Since                                    spans the analysis uncertainty subspace, one can 

say that uncertainty is transported in time by a (linear) model M    
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Each uncertainty column vector is a member of an “ensemble” (i.e. span) 
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Transport uncertainty in time by a nonlinear model M (one span vector at a time)  

Generalize KF to include nonlinear forecast model: 



Ensemble data assimilation based on 

Control Theory: General formulation of the MLEF 

HESSIAN  

PRECONDITIONING 

CONTROL VARIABLE UPDATE: xa 
t ; Pa

t 

FIRST GUESS: xf 
t ; Pf 

t 

INPUT CONTROL VARIABLE  xa
t-1; Pa

t-1
 

Prediction Model 

Ensemble + Control 

Observation operators 

Ensemble + Control 

NEW DA CYCLE 

ITERATIVE 

MINIMIZATION 

MINIMIZATION (dk) 

k=1 
NO 

LINE SEARCH (k) 

 A hybrid between EnKF and 

variational data assimilation 
 

 Full-rank or reduced-rank 
 

 Deterministic first guess forecast 
 

 Analysis is the maximum of a 

posterior pdf 
 

 Nonlinear analysis solution by an 

iterative minimization 
 

 Improved minimization efficiency by 

an implicit Hessian preconditioning 



MLEF unique and special  features 

 Fully nonlinear ensemble data assimilation / forecasting system 

 

 Analysis obtained by an iterative minimization of nonlinear cost function 

 

 Advanced Hessian preconditioning using a complete information from 

prediction model and observations 

 

 Standard unconstrained minimization algorithms with Gateaux differential 

substituted by its finite-difference representation are used 

 

 Reduced growth of Local Lyapunov Vectors (LLV) using observations 

(Carrassi et al. 2009) 

 

 Object-oriented programming (flexible for adding/deleting modules) 

 

 Parallel computation capability (MPI) 



MLEF Equations 

 Change of variable (Hessian preconditioning): 
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Hessian Preconditioning in MLEF 

Physical space 
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 Hessian  preconditioning is critical for efficient minimization. 

Cost Function: 
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Relevance of line search 

Therefore, d is not sufficient: Need a size parameter for nonlinear cost function. 

An intuitive approach is Newton's method, EnKF).However ...

J(xk  (dk )1) may not be the optimal (minimum) value 

J(xk  (dk )2 ) could be worse then the starting point 

f (xopt )

xk

dk 
1

dk 
2

Optimal point along direction d 

MLEF employs an advanced line search based on satisfying the Wolfe conditions.  
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Finite-difference representation of 

Gateaux differentials 

 Standard Taylor expansion of cost function using Gateaux differentials: 
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 Expansion of cost function using finite differences with t=1 (MLEF): 
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- No additional nonlinear terms for t=1 ! All components included. 

- The value of t defines the degree of nonlinearity in FD differentials  
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Define finite-difference (FD) representation of Gateaux differentials: 
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Finite-difference representation of 

Gateaux differentials in MLEF minimization 

Note that this is the same form as if using true G-differentials 

MLEF Standard 
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Robustness of nonlinear CG and BFGS algorithms improved with FD representation !  

(Zupanski et al. 2008)  



Results/Accomplishments  

Mid-term accomplishments: 

 The latest version of WRF-CHEM (V3.3) installed on Ewha computer. 

 The latest version of WRF Preprocessing System (WPS) installed on Ewha 

computer. 

 MLEF algorithm installed on Ewha computer. 

 WRF-CHEM, WPS and MLEF are compiled and interfaced.  

 

Remaining tasks (until the end of the project):  

 Create simulated O3 observations for OSSE using WRF-CHEM.  

 Evaluate the performance of the MLEF-WRF-CHEM algorithm in 

assimilation of simulated ozone data. 

- All tasks are on track 

- Accomplishment of all tasks is expected by the end of the project 



Experimental setup  

 WRF-CHEM model centered over Korea 

 WRF-CHEM model resolution 27 km / 28 layers (131x111x28) 

 Automatic processing of model files (lateral BC, IC) from NCEP global 

model (GFS) at 6-hour intervals 

 Simulated observations of ozone at model grid points at 6-hour intervals 

 Only one minimization iterations since observation operator is an identity  

WRF-CHEM model domain 



Future plans (long term goals)  

 Develop/adopt an observation operator for aerosol/ozone. This may include satellite 

and/or other observations. 

 

 Assimilate real satellite observations from the Korean environmental satellite. 

Demonstrate the system’s capability to process such observations.  

 

 Evaluate the MLEF-WRF-CHEM system in high-resolution chemical transport DA. 

Focus on the impact of the Korean environmental satellite observations.  



Usefulness and Applicability of  

Research Results 

 

 Maximize the utility of high-resolution observations from Korean environmental 

satellite using advanced data assimilation and prediction system  

 

 Prepare for satellite launching by developing the components required for an efficient 

and thorough processing of environment satellite observations 

 

 Improve our knowledge of geographical coverage and concentration of atmospheric 

chemistry constituents over Korean peninsula and surrounding areas (information 

content analysis)  

 

 Useful for future tracking of air-pollution sources and sinks 
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