# **GEMS\*** ground system

\*Geostationary Environment Monitoring Spectrometer

#### **Presenter: Jongmin Yoon**

a∰ Z

**Environmental Satellite Center** 

National Institute of Environmental Research, South Korea



National Institute of Environmental Research





#### **GEMS Measurement principle**

#### **GEMS Measurement Concept**



The GEMS system employs a 1032 x 2048 pixel CCD detector that operates from 300 -500 nm, which at a minimum, enables NO<sub>2</sub>, SO<sub>2</sub>, HCHO, O<sub>3</sub>, and aerosol retrieval. The telescope projects the slit field of view onto the Earth, and the full field of regard is achieved via a 2-axis onboard scan mirror.

y (t)

### **GEMS Space Segment**



- Commanding & data downlink
  - KARI(Daejon, Korea)
    - : S-band TM & TC
  - NIER(Incheon, Korea)
    - : X-band

Data processing and service

#### GK-2B Satellite (Geostationary orbit)

- Payloads: GEMS, GOCI-II
- Lifetime > 10years
- Launch : Oct. 2019~2020
  (at French Guiana-Kourou)



#### Currently state and plans

- Level2 Algorithms developed for 16 species (~ 2017)
  \* Final 24 products will be tested for operation (2018~2019)
- New building(Environmental Satellite Center) and antenna system constructed (~2017)
- GEMS payload delivered to KOREA (Jan, 2018)
- CDR (Apr, 2018) and delta-CDR(May, 2018) for Ground systems
- Install of operation S/W and H/W (Dec, 2018)
- S/W development for satellite data analysis (2018~2019)
- Development of algorithms for Level3 and Value added products (2018~2020)
- Launch (Oct., 2019~Mar., 2020)
- Data service for forecaster (2020~) and public(2021~)

#### Creating a new department for GEMS operation

- Environmental Satellite
  Center is a new department
  for GEMS operation
  (Apr, 2018)
- ESC consists of three teams :
  1) Development team
  - 2) Analysis team
  - 3) Operation team



Fig. Environmental satellite center in NIER

- Construction of GEMS ground station was completed for receiving, processing, management, and distribution of data
  - Located in NIER, Incheon, South Korea
  - Dual Reflector type of 9m Antenna



#### Role of Environmental Satellite Center

#### **GEMS development team**

- Routine control of data quality
- Calibration study
- Geophysical validation of products
  - DOAS, Pandora, ...
  - NIER announcement of opportunity call in 2019 to engage experts for the calibration and validation of GEMS select projects and release validation team, 2019~(TBD)
  - Cal/Val activity and feedback, 2020~
- Maintenance and update
  - Manage the updates of : calibration algorithm and tools
  - L1 and L2 processor algorithm
  - Quality control tools
  - Validation algorithms



#### Role of Environmental Satellite Center

#### Data analysis team

- Near real-time satellite data analysis for air quality forecast
  - Development of satellite data analysis system
  - Analysis of distribution characteristics of air pollutants from satellite data, target to forecasted materials
- Making a report for the extreme cases of air pollutants
  - Study for the contribution rate of air pollutants from overseas
  - Correction of bottom-up emission and analysis of how it was changed compared to the past



#### **Role of Environmental Satellite Center**

#### **Operation team**

- Operation of GEMS payload
  - Implement observation mission of GEMS
  - Establishment of daily GEMS observation plan
  - Verification of Real-time outlier
  - Products management
- Operation of GEMS ground segment
  - Check any faults of integrated data processing system
  - Management of network and security
- Data service system development
  - Collecting data requirements and feedback to the service system
  - Development and improvement of transmit techniques between GEMS ground segment and air quality forecasting system
  - Web-site management and data service to related organization
- International cooperation and sharing data with other countries

#### Main concept of ESC operation

| Operational<br>Concept   | Explanation                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Non-stop<br>Operation    | Non-stop Operating ground station for 24hours and 365days<br>Securing stability and non-stop automation through active-active high stability<br>multiplexing<br>Constructing an operation system in emergencies and at all times<br>Establishment of back-up system for each sub system |  |  |  |  |  |  |  |
| Real-time<br>Service     | Acquisition in real-time and distribution in near-real-time<br>Distribution within 1 hour after receiving RAW data<br>Improvement of processing efficiency through algorithm parallelization                                                                                            |  |  |  |  |  |  |  |
| Operation<br>for 10years | <b>Operating 10 years according to designed duration of GK2B operation</b><br>Considering expansion possibilities of hardware, software, network, and new facilities                                                                                                                    |  |  |  |  |  |  |  |
| Data archive             | Archiving all data in main storage, that is received and produced<br>Building storage system that can expand and meet storage requirements                                                                                                                                              |  |  |  |  |  |  |  |
| Back-up<br>system        | <b>Constructing back-up system for data reliability</b><br>Non-stop Operating with rapid substitution in case of failure<br>Establishment of back-up system to meet system operation concept and requirements                                                                           |  |  |  |  |  |  |  |
| High<br>Availability     | Achieving 99% or more operational availability for high-speed processing<br>and customized services with Hot backup system                                                                                                                                                              |  |  |  |  |  |  |  |

## Level1B products

- Definition
  - Calibrated radiance data from 300nm to 500nm with navigation coordinate (not including of resampling)
- Measurement types
  - Earth, Working solar diffuser, reference solar diffuser, Dark current, Light Emitting Diode(LED)
- Format : NetCDF
- Data policy(TBD) : service for public in phases
  - First phase: air quality forecaster in NIER (L+8M IOT~)
  - Second phase: public(uploading data after all observation are finished in a day) (L+2Y~)

## Level2 products

- Definition
  - Total column density or background products that are retrieved by level2 algorithms
- Products
  - Ozone, Aerosol, NO2, HCHO, SO2, CHOCHO, Cloud, Surface reflection, UVI, ...
- Format : NetCDF
- Data policy(TBD) : service for public in phases
  - first phase: air quality forecaster in NIER (L+8M IOT~)

- second phase: public(uploading data after all observation are finished in a day) (L+2Y~)

#### Examples of Level2 products using OMI





Credit : Mijin Kim (Yonsei U) – Aerosol Y.S. Choi (EWU) - Cloud Jae H. Kim (Busan NU) – O<sub>3</sub> Hanlim Lee (Pukyung NU) - NO<sub>2</sub> Rokjin Park (SNU) – HCHO, CHOCHO Y.J. Kim (GIST) –SO<sub>2</sub> J.M. Yoo(EWU), M.J. Jeong(GWNU) – Sfc prod M.H. Ahn (EWU) - calibration

| Product                                  | Importan<br>ce                               | Min<br>(cm <sup>-2</sup> ) | <b>Max</b><br>(cm <sup>-2</sup> ) | Nominal<br>(cm <sup>-2</sup> ) | Accuracy                               | Windo<br>w(nm) | Spat Resol<br>(km <sup>2</sup> )@Sel | SZA<br>(deg)  | Algorit<br>hm                                                                    |
|------------------------------------------|----------------------------------------------|----------------------------|-----------------------------------|--------------------------------|----------------------------------------|----------------|--------------------------------------|---------------|----------------------------------------------------------------------------------|
| NO <sub>2</sub>                          | O3<br>precursor                              | 3x10 <sup>13</sup>         | 1x10 <sup>17</sup>                | 1x10 <sup>14</sup>             | 1x10 <sup>15</sup><br>cm <sup>-2</sup> | 425-450        | 7 x 8<br>x 2 pixels                  | < 70          |                                                                                  |
| SO2                                      | Aerosol<br>precursor<br>Volcano              | 6x10 <sup>8</sup>          | 1x10 <sup>17</sup>                | 6x10 <sup>14</sup>             | 1x10 <sup>16</sup><br>cm <sup>-2</sup> | 310-330        | 7 x 8<br>x 4 pixels<br>x 3 hours     | < 50<br>(60*) | BOAS                                                                             |
| нсно                                     | VOC                                          | 1x10 <sup>15</sup>         | 3x10 <sup>16</sup>                | 3x10 <sup>15</sup>             | 1x10 <sup>16</sup><br>cm <sup>-2</sup> | 327-357        | 7 x 8<br>x 4 pixels                  | < 50<br>(60*) | DUAS                                                                             |
| сносно                                   | proxy                                        |                            |                                   |                                | 1x10 <sup>16</sup><br>cm <sup>-2</sup> | 437-452        | 7 x 8<br>x 4 pixels                  | < 50          |                                                                                  |
| TropLO3<br>TropUO3<br>StratO3<br>TotalO3 | Oxidant<br>Pollutant<br>O <sub>3</sub> layer | 4x10 <sup>17</sup>         | 2x10 <sup>18</sup>                | 1x10 <sup>18</sup>             | 3%(TOz)<br>5%(Stra)<br>20(Trop)        | 300-340        | 7 x 8                                | < 70          | OE<br>TOMS                                                                       |
| AOD<br>AI<br>SSA<br>AEH                  | Air quality<br>Climate                       | 0 (AOD)                    | 5 (AOD)                           | 0.2 (AOD)                      | 20% or<br>0.1@<br>400nm                | 300-500        | <mark>3.5</mark> x 8                 | < 70          | $\begin{array}{c} \text{Multi-} \\ \lambda \\ \text{O}_2 \text{O}_2 \end{array}$ |
| ECF<br>CCP                               | Retrieval<br>Climate                         | 0 (COD)                    | 50 (COD)                          | 17 (COD)                       |                                        | 300-500        | 7 x 8                                | < 70          | O <sub>2</sub> O <sub>2</sub><br>RRS                                             |
| Surface<br>Property                      | Environ-<br>ment                             | 0                          | 1                                 | -                              |                                        | 300-500        | 3.5 x 8                              | < 70          | Multi-<br>λ                                                                      |
| UVI                                      | Public<br>health                             | 0                          | 12                                | -                              |                                        | 300-350        | 7 x 8                                | <b>~</b> 70   | MS                                                                               |

### Level3 products

- Definition
  - Correcting low-quality pixel in Level2 products to improve retrieval accuracy and support more information to nonspecialists with handling satellite data
  - Composing and averaging Level2 products in temporal and spatial with resampling work
- Target : NO2, O3, Aerosol
- Format: NetCDF(TBD)
- Schedule: Plan to undertake development these algorithms in Mar, 2018



## Value added products

- Definition
  - Surface information of air pollutants and so on
- **Target :** NO2, O3, Aerosol(PM2.5, PM10)
- Schedule
  - Developed the draft algorithm for PM2.5 retrieval in
    2017 and will improve it
  - Plan to undertake development the other algorithms in 2018



#### **Development of surface concentration**

- A draft of PM2.5 retrieval algorithm was developed for extracting fine aerosol information on the ground, that has significant effect on human body
  - Adopting the MLR(Multi Linear Regression) method
  - Consideration of the relationship between AOD and ground PM, weather conditions, and geographical conditions



Figure: Scatter plots between estimated PM2.5 and observed PM2.5 in South Korea(left) and the spatial distribution over East Asia(right)

### **Operation Test Plan**

#### Operation test for ground station system before launch

Tasks

- Organically interworking between system modules in ground segments
- Reviewing functionality and appropriateness between operating systems
- Evaluating retrieval algorithms' accuracy
- Detail schedule
  - (1<sup>st</sup>) Evaluating performance of data retrieval algorithms and validation modules (2018.10~2019.3)
  - (2<sup>nd</sup>) Review of operational plan appropriateness, checking functionality of the integrated operating system and operational process (2019.4 ~ 2020)

#### Operation test for LEOP and IOT after launch(2020~2021)

- Tasks
  - System functionality test using actual satellite observation data
  - Fine-tuning algorithms for changes after launch

#### SUMMARY

- The Ministry of Environment (National Institute of Environmental Research) is developing a geostationary environment satellite for monitoring air pollutants over East Asia and climate change causing substances at all times.
- Expected products are column density such as O3, NO2, SO4, HCHO, AOD, periodic averaged and gridded data(Level3), and valued added products
- **The Environmental Satellite Center** for GEMS is created and construction of data processing system is on-schedule, that will be stable and process data rapidly
- In the future, GEMS will be launched in 2019~2020 and perform in orbit test for 8 months. GEMS data will be serviced for public after 2021.
- The GEMS will be used to monitor air pollutants such as long range transport and it will contribute to improvement accuracy of air quality forecasting and emission data with top-down approach.

## Thank you for your attention!!!

